EXPLORATORY ANALYSIS OF A LARGE COLLECTION OF TIME-SERIES USING AUTOMATIC SMOOTHING TECHNIQUES

Ravi Varadhan, Ganesh Subramaniam

Johns Hopkins University AT&T Labs - Research

• Goal: To extract summary measures and features from a large collection of time series.

- Exploratory analysis (as opposed to inferential)
- e Hypothesis generation
- Interesting (anomalous) time series
- Common features among time series (e.g., critical points)

• Process to be as automatic as possible.

- Scale of time series
- Mean value of function
- Values of derivatives
- Outliers
- Critical points
- Curvatures
- Signal/noise
- Others

- Features are defined on smooth curves.
- What we have is discretely sampled observations.
- We need functional data techniques to recover underlying smooth function.

$$y(t_i) = f(t_i) + \varepsilon_i; E(\varepsilon_i) = 0$$

 Automatic bandwidth selection procedures (e.g., cross-validation, plug-in)

- Optimal bandwidth selection is usually applied to the function.
- This may NOT be optimal for estimating derivatives.
- The relationship between optimal BWs for function estimation and derivative estimation is not clear.
- Here we evaluate 4 automatic smoothing techniques in terms of their accuracy for estimating functions and its first two derivatives via simulation studies.

- Smoothing splines with gcv for bw selection (*stats::smooth.spline*).
- Penalized splines with REML estimate(*SemiPar::spm*).
- Local polynomial with plugin bw (*KernSmooth::locpoly*).
- Gasser-Muller kernel global plug-in bw (*lokern::glkerns*).

- Regression function. (4 functions with different characteristics)
- Error distribution. (*t* distribution 5 df)
- Grid layout. (either uniform random or equally spaced)
- Noise level. ($\sigma = 0.5, 1.2$)

REGRESSION FUNCTION ESTIMATION

$MISE, Variance & Bias^2$

Function	SS	SPM	GLK	LOC
$f_1(x) = x + 2 \exp(-400x^2), \sigma = 0.5,$	2.60	0.36	0.16	0.18
	2.600	0.100	0.100	0.069
	0.031	0.250	0.057	0.110
$f_2(x) = [1 + \exp(-10x)]^{-1}, \sigma = 0.5,$	2.100	0.026	0.049	0.028
207 1	2.100	0.026	0.048	0.028
	0.0041	0.0000	0.0000	0.0000
$f_3(x) = 10 \exp(-x/60) + 0.5 \sin(\frac{2\pi}{20}(x-10)) + \sin(\frac{2\pi}{20}(x-30))$	0.00540	0.02200	0.00081	0.00084
$\sigma = 0.5$	0.00540	0.00020	0.00068	0.00060
	5.4e — 05	0.021	0.00013	0.00025
$f_A(x) = \sin(8\pi x^2), \sigma = 0.5,$	0.048	0.640	0.068	0.089
T ()	0.043	0.120	0.042	0.027
	0.0091	0.5200	0.0270	0.0620

FIRST DERIVATIVE ESTIMATION

$MISE, Variance & Bias^2$

First Derivative	SS	SPM	GLK	LOC
$f_1(x) = x + 2 \exp(-400x^2), \sigma = 0.5,$	44.00	0.80	0.47	0.66
	44.00	0.11	0.16	0.28
	0.21	0.69	0.30	0.38
$f_2(x) = [1 + \exp(-10x)]^{-1}, \sigma = 0.5,$	2600.00	0.67	3.20	2.90
207 1	2600.00	0.57	3.20	2.90
	6.300	0.098	0.014	0.018
$f_3(x) = 10 \exp(-x/60) + 0.5 \sin(\frac{2\pi}{20}(x-10)) + \sin(\frac{2\pi}{20}(x-30))$	25.000	0.970	0.055	0.090
$\sigma = 0.5$	25.000	0.0023	0.0400	0.0820
	0.047	0.970	0.015	0.008
$f_A(x) = \sin(8\pi x^2), \sigma = 0.5,$	0.13	0.73	0.17	0.15
	0.098	0.130	0.041	0.047
	0.037	0.610	0.130	0.110

SECOND DERIVATIVE ESTIMATION

MISE, Variance & Bias²

Second Derivative	SS	SPM	GLK	LOC
$f_1(x) = x + 2 \exp(-400x^2), \sigma = 0.5,$	230.00	1.00	0.99	1.00
	230.00	0.001	0.015	0.079
	1.00	1.00	0.97	0.96
$f_2(x) = [1 + \exp(-10x)]^{-1}, \sigma = 0.5,$	6.6e + 06	6.90	217.0	482.0
207 1	6.6e + 06	3.40	214.0	478.0
	14000.0	3.50	3.00	3.6
$f_3(x) = 10 \exp(-x/60) + 0.5 \sin(\frac{2\pi}{20}(x-10)) + \sin(\frac{2\pi}{20}(x-30))$	4600.00	1.00	0.23	2.50
$\sigma = 0.5$	4.6e03	0.0015	0.11	2.50
	7.800	1.000	0.120	0.019
$f_A(x) = \sin(8\pi x^2), \sigma = 0.5,$	0.81	0.80	0.32	0.41
T ()	0.730	0.160	0.035	0.280
	0.084	0.640	0.290	0.130

- Smoothing spline, with cross-validated optimal bandwidth, did poorly.
- Penalized splines, with REML penalty estimation, did well on smooth functions, and worse on functions with high frequency variations (high bias).
- Global plug-in bandwidth kernel methods, *glkerns* and *locpoly* generally did well (higher variance).
- *glkerns* seems to be a good choice for estimating lower-order derivatives.

- An R function to extract summary measures and features of a collection of time series.
- We demonstrate that with a large collection of time series data from AT&T.
- Over 1200 time-series with monthly MOU over a 3.5 year period.
- The data were transformed & scaled for proprietary reasons.

UNIVARIATE VIEW OF FEATURES

A BIPLOT ON FEATURES

 $FIGURE:\ \mbox{PCA}$ of features Data

Another Biplot on Features

 $FIGURE:\ \mbox{PCA}$ of features Data

ts: 1205

 $FIGURE:\ \mbox{PCA}$ of features Data

 $FIGURE: \ \mathsf{PCA} \ \mathsf{of} \ \mathsf{features} \ \mathsf{Data}$

 $FIGURE:\ \mbox{PCA}$ of features Data

 $FIGURE:\ \mbox{PCA}$ of features Data

- Release package.
- Add more visualization.
- Further testing on real data.

THANK YOU!

Nonparametric regression models are used.

Functional form of the models

- We consider a univariate scatterplot smoothing $y_i = f(x_i) + \epsilon_i$ where the $(x_i, y_i), 1 \le i \le n$, are scatter plot data, ϵ_i are zero mean random variables with variance σ_e^2 and f(x) = E(y|x) is a smooth function.
- f is estimated using penalised spline smoothing using truncated polynomial basis functions. These involve f being modelled as a function of the form

$$f(x) = \beta_0 + \beta_1 x + \dots + \beta_p x^p + \sum_{k=1}^K u_k (x - x_k)^p$$

where u_k are random coefficients

$$\boldsymbol{u} \equiv [u_1, u_2, \dots, u_K]^T \sim N(0, \sigma_u^2 \,\Omega^{-1/2} \,(\Omega^{-1/2})^T), \quad \Omega \equiv [|\boldsymbol{x}_k - \boldsymbol{x}_{k'}|^{2p}]$$

- The mixed model representation of penalised spline smoothers allows for automatic fitting using the R linear mixed model function. Smoothing parameter selection is done using REML and f(x) is obtained via best linear unbiased prediction.
- This class of penalised spline smoothers may also be expressed as

$$\hat{f} = C(C^T C + \lambda^{2p} D)^{-1} C^T y$$

where $\lambda = \frac{\sigma_{\mu}^2}{\sigma_{\epsilon}^2}$ is the smoothing parameter,

$$C \equiv [1, x_i, \dots, x_i^{m-1} | x_i - x_k |^{2p}]$$

Function	SS	SPM	GLK	LOC
$f_1(x) = x + 2 \exp(-400x^2), \sigma = 0.5,$	$(2.100)_{MISE} =$ $(2.100)_{ivar} + (0.0041)_{isb}$	$(0.026)_{MISE} = (0.026)_{ivar} + (0.0000)_{isb}$	$(0.049)_{MISE} = (0.048)_{ivar} + (0.0000)_{isb}$	$(0.028)_{MISE} = (0.028)_{ivar} + (0.0000)_{isb}$
$f_2(x) = [1 + \exp -10x]^{-1}, \sigma = 0.5,$	$(1.30)_{MISE} = (1.30)_{ivar} + (0.10)_{isb}$	$(0.68)_{MISE} = (0.21)_{ivar} + (0.470)_{isb}$	$(0.31)_{MISE} = (0.25)_{ivar} + (0.065)_{isb}$	$(0.27)_{MISE} = (0.22)_{ivar} + (0.055)_{isb}$
$ f_3(x) = 0.3 \exp(-4(x+1)^2) + 0.7 \exp(16(x-1)^2), \sigma = 0.4, $	$(2.30)_{MISE} = (2.20)_{ivar} + (0.059)_{isb}$	$(0.48)_{MISE} = (0.23)_{ivar} + (0.260)_{isb}$	$(0.43)_{MISE} = (0.34)_{ivar} + (0.093)_{isb}$	$(0.36)_{MISE} = (0.30)_{ivar} + (0.060)_{isb}$
$f_4(x) = 0.8 + \sin(6x), \sigma = 4,$	$(9.40)_{MISE} = (9.40)_{ivar} + (0.0430)_{isb}$	$(0.63)_{MISE} = (0.63)_{ivar} + (0.0000)_{isb}$	$(0.95)_{MISE} = (0.95)_{ivar} + (0.0093)_{isb}$	$(0.89)_{MISE} = (0.89)_{ivar} + (0.0078)_{isb}$
	$(0.00540)_{MISE} =$ $(0.00540)_{ivar} + (5.4e -$ $05)_{isb}$	$(0.02200)_{MISE} =$ $(0.00020)_{ivar} + (2.1e -$ $02)_{isb}$	$(0.00081)_{MISE} =$ $(0.00068)_{ivar} + (1.3e -$ $04)_{isb}$	$(0.00084)_{MISE} =$ $(0.00060)_{ivar} + (2.5e -$ $04)_{isb}$
$f_6(x) = \sin(8\pi x^2), \sigma = 0.5,$	$(0.048)_{MISE} = (0.043)_{ivar} + (0.0091)_{isb}$	$(0.640)_{MISE} = (0.120)_{ivar} + (0.5200)_{isb}$	$(0.068)_{MISE} = (0.042)_{ivar} + (0.0270)_{isb}$	$(0.089)_{MISE} = (0.027)_{ivar} + (0.0620)_{isb}$

First Derivative	SS	SPM	GLK	LOC
$f_1(x) = x + 2 \exp(-400x^2), \sigma = 1.6,$	$(44.00)_{MISE} = (44.00)_{ivar} + (0.21)_{isb}$	$(0.80)_{MISE}$ = $(0.11)_{ivar}$ + $(0.69)_{isb}$ =	$(0.47)_{MISE}$ = $(0.16)_{ivar}$ + $(0.30)_{isb}$ =	$(0.66)_{MISE} = (0.28)_{iyar} + (0.38)_{isb}$
$f_2(x) = [1 + \exp -10x]^{-1}, \sigma = 1.2,$	$(2600.00)_{MISE} = (2600.00)_{ivar} + (6.300)_{isb}$	$(0.67)_{MISE} = (0.57)_{ivar} + (0.098)_{isb}$	$(3.20)_{MISE} = (3.20)_{ivar} + (0.014)_{isb}$	$(2.90)_{MISE} =$ $(2.90)_{ivar} + (0.018)_{isb}$
$f_3(x) = 0.3 \exp(-4(x+1)^2) + 0.7 \exp(16(x-1)^2), \sigma = 0.4,$	(490.00) _{MISE} = (490.00) _{ivar} + (0.52) _{isb}	$(1.00)_{MISE} = (0.26)_{ivar} + (0.75)_{isb}$	$(0.95)_{MISE} = (0.62)_{ivar} + (0.33)_{isb}$	$(1.50)_{MISE} = (1.20)_{ivar} + (0.23)_{isb}$
$f_4(x) = 0.8 + \sin(6x), \sigma = 4,$	(33000.0) _{MISE} = (33000.0) _{ivar} + (20.000) _{isb}	$(5.3)_{MISE}$ $(5.2)_{ivar}$ + $(0.086)_{isb}$	(26.0) _{MISE} = (26.0) _{ivar} + (0.033) _{isb}	(40.0) _{MISE} = (40.0) _{ivar} + (0.048) _{isb}
	$(25.000)_{MISE} = (25.0000)_{ivar} + (0.047)_{isb}$	$(0.970)_{MISE} = (0.0023)_{ivar} + (0.970)_{isb}$	$(0.055)_{MISE} = (0.0400)_{ivar} + (0.015)_{isb}$	$(0.090)_{MISE} = (0.0820)_{ivar} + (0.008)_{isb}$
$f_{6}(x) = \sin(8\pi x^{2}), \sigma = 0.5,$	$(0.13)_{MISE} = (0.098)_{ivar} + (0.037)_{isb}$	$(0.73)_{MISE} = (0.130)_{ivar} + (0.610)_{isb}$	$(0.17)_{MISE} = (0.041)_{ivar} + (0.130)_{isb}$	$(0.15)_{MISE} = (0.047)_{ivar} + (0.110)_{isb}$

Second Derivative	SS	SPM	GLK	LOC
$f_1(x) = x + 2 \exp(-400x^2), \sigma = 1.6,$	$(230.00)_{MISE} =$ $(230.00)_{ivar} + (1.00)_{isb}$	$(1.00)_{MISE} = (0.001)_{ivar} + (1.00)_{isb}$	$(0.99)_{MISE} = (0.015)_{ivar} + (0.97)_{isb}$	$(1.00)_{MISE} = (0.079)_{ivar} + (0.96)_{isb}$
$f_2(x) = [1 + \exp -10x]^{-1}, \sigma = 1.2,$	$(6.6e + 06)_{MISE} =$ $(6.6e + 06)_{ivar} +$ $(14000.0)_{isb}$	$(6.9e + 00)_{MISE} = (3.4e+00)_{ivar} + (3.5)_{isb}$	$(2.2e + 02)_{MISE} =$ $(2.1e+02)_{ivar} + (3.0)_{isb}$	$(4.8e + 02)_{MISE} = (4.8e+02)_{ivar} + (3.6)_{isb}$
$f_3(x) = 0.3 \exp(-4(x+1)^2) + 0.7 \exp(16(x-1)^2), \sigma = 0.4,$	$(1.4e + 05)_{MISE} =$ $(1.4e + 05)_{ivar} +$ $(95.00)_{isb}$	$(1.1e + 00)_{MISE} =$ $(1.5e - 01)_{ivar} +$ $(0.94)_{isb}$	$(1.8e + 00)_{MISE} =$ $(1.2e + 00)_{ivar} +$ $(0.62)_{isb}$	$(3.7e + 01)_{MISE} =$ $(3.7e + 01)_{ivar} +$ $(0.44)_{isb}$
$f_4(x) = 0.8 + \sin(6x), \sigma = 4,$	$(3.7e + 10)_{MISE} =$ $(3.7e + 10)_{ivar} + (1.4e +$ $07)_{isb}$	$(6.5e + 01)_{MISE} =$ $(6.5e+01)_{ivar} + (6.6e -$ $01)_{isb}$	$(1.0e + 03)_{MISE} =$ $(1.0e+03)_{ivar} + (1.0e +$ $00)_{isb}$	$(3.4e + 04)_{MISE} =$ $(3.4e+04)_{ivar} + (3.2e+$ $01)_{isb}$
$ f_{5}(x) = a \exp(-bx) + k_{1} \sin(\frac{2\pi}{T_{1}}(x-10) + k_{2} \sin(\frac{2\pi}{T_{2}}(x-30)), \sigma = 0.5, $	$(4600.00)_{MISE} =$ $(4.6e + 03)_{ivar} +$ $(7.800)_{isb}$	$(1.00)_{MISE} = (1.5e - 0.00)_{ivar} + (1.000)_{isb}$	$(0.231.)_{MISE} = (1e - 01)_{ivar} + (0.120)_{isb}$	$(2.50)_{MISE} = (2.5e + 00)_{ivar} + (0.019)_{isb}$
$f_{6}(x) = \sin(8\pi x^{2}), \sigma = 0.5,$	$(0.81)_{MISE} = (0.730)_{ivar} + (0.084)_{isb}$	$(0.80)_{MISE} = (0.160)_{ivar} + (0.640)_{isb}$	$(0.32)_{MISE} = (0.035)_{ivar} + (0.290)_{isb}$	$(0.41)_{MISE} = (0.280)_{ivar} + (0.130)_{isb}$

Function	SS	SPM	GLK	LOC
$f_1(x) = x + 2\exp(-16x^2), \sigma = 0.4,$	$(0.083)_{MISE} = (0.080)_{ivar} + (0.0029)_{isb}$	$(0.031)_{MISE} = (0.015)_{ivar} + (0.0160)_{isb}$	$(0.022)_{MISE} = (0.017)_{ivar} + (0.0043)_{isb}$	$(0.021)_{MISE} = (0.014)_{ivar} + (0.0071)_{isb}$
$f_2(x) = \sin(2\pi x) + 2\exp(-16x^2), \sigma = 0.3,$	$(0.092)_{MISE} = (0.089)_{ivar} + (0.0034)_{isb}$	(0.079) _{MISE} = (0.046) _{ivar} +(0.0320) _{isb}	(0.035) _{MISE} = (0.026) _{ivar} +(0.0091) _{isb}	$(0.033)_{MISE} = (0.023)_{ivar} + (0.100)_{isb}$
	$(0.160)_{MISE} = (0.150)_{ivar} + (0.000)_{isb}$	$(0.055)_{MISE} = (0.049)_{ivar} + (0.012)_{isb}$	$(0.051)_{MISE} = (0.050)_{ivar} + (0.000)_{isb}$	$(0.050)_{MISE} = (0.050)_{ivar} + (0.001)_{isb}$
$f_4(x) = 0.8 + \sin(6x), \sigma = 1,$	$(0.600)_{MISE} = (0.600)_{ivar} + (0.00180)_{isb}$	$(0.041)_{MISE} =$ $(0.039)_{ivar} +$ $(0.00000)_{isb}$	$(0.078)_{MISE} =$ $(0.073)_{ivar} +$ $(0.00055)_{isb}$	$(0.064)_{MISE} =$ $(0.060)_{ivar} +$ $(0.00018)_{isb}$
$ \begin{split} f_5(x) &= a \exp(-bx) + k_1 \sin(\frac{2\pi}{I_1}(x-10) + k_2 \sin(\frac{2\pi}{I_2}(x-30)), & \sigma = 0.5, \end{split} $	$(2.020293e - 07)_{MISE} = (1.930502e - 07)_{ivar} + (1.032594e - 08)_{isb}$	$(1.526443e - 07)_{MISE} = (1.481548e - 079)_{ivar} + (6.734309e - 0)_{isb}$	$(2.379456e - 07)_{MISE} = (2.020293e - 07)_{ivar} + (3.456945e - 08)_{isb}$	$(2.469247e - 07)_{MISE} = (1.795816e - 07)_{ivar} + (6.734309e - 08)_{isb}$

First Derivative	SS	SPM	GLK	LOC
$f_1(x) = x + 2 \exp(-16x^2), \sigma = 0.4,$	(55.00) _{MISE} = (55.00) _{ivar} + (0.086) _{isb}	$(0.36)_{MISE} = (0.12)_{ivar} + (0.240)_{isb}$	$(0.27)_{MISE} = (0.15)_{ivar} + (0.120)_{isb}$	$(0.38)_{MISE} = (0.28)_{ivar} + (0.099)_{isb}$
$f_2(x) = \sin(2\pi x) + 2\exp(-16x^2), \sigma = 0.3,$	$(8.0)_{MISE} = (8.000)_{ivar} + (0.013)_{isb}$	$(0.13)_{MISE} = (0.071)_{ivar} + (0.055)_{isb}$	$(0.08)_{MISE} = (0.048)_{ivar} + (0.032)_{isb}$	$(0.19)_{MISE} = (0.170)_{ivar} + (0.013)_{isb}$
$f_3(x) = 0.3 \exp(-4(x+1)^2) + 0.7 \exp(16(x-1)^2), \sigma = 0.1,$	$(31.00)_{MISE} =$ $(31.00)_{ivar} + (0.049)_{isb}$	$(0.24)_{MISE} = (0.10)_{ivar} + (0.140)_{isb}$	(0.20) _{MISE} = (0.12) _{ivar} + (0.084) _{isb}	$(0.32)_{MISE} = (0.27)_{ivar} + (0.048)_{isb}$
$f_4(x) = 0.8 + \sin(6x), \sigma = 1,$	$(2100.00)_{MISE} =$ $(2100.00)_{ivar} +$ $(1.3000)_{isb}$	$(0.41)_{MISE} = (0.34)_{ivar} + (0.0750)_{isb}$	$(1.80)_{MISE} = (1.80)_{ivar} + (0.0087)_{isb}$	$(2.80)_{MISE} = (2.80)_{ivar} + (0.0077)_{isb}$
$f_5(x) = a \exp(-bx) + k_1 \sin(\frac{2\pi}{T_1}(x-10) + k_2 \sin(\frac{2\pi}{T_2}(x-30)), \sigma = 0.5,$	$(0.25882353)_{MISE} = (0.25882353)_{ivar} + (0.0001176471)_{isb}$	$(0.01411765)_{MISE} = (0.00917647)_{ivar} + (0.0057647059)_{isb}$	$(0.03176471)_{MISE} =$ $(0.02235294)_{ivar} +$ $(0.0092941176)_{isb}$	$(0.30588235)_{MISE} =$ $(0.30588235)_{ivar} +$ $(0.0006705882)_{isb}$

Second Derivative	SS	SPM	GLK	LOC
$f_1(x) = x + 2 \exp(-16x^2), \sigma = 0.4,$	1.8e + 04	8.7e - 01	8.8e - 01	.0e + 01
	1.8 (+04)	1.5×10^{-01}	2.4e - 01	8.0e + 01
	12.00	0.72	0.63	0.50
$f_2(x) = \sin(2\pi x) + 2\exp(-16x^2), \sigma = 0.3,$	$(2400.00)_{MISE} =$ $(2.4e + 03)_{ivar} +$ $(1.60)_{isb}$	$(0.24)_{MISE} = (1.1e - 01)_{ivar} + (0.13)_{isb}$	$(0.24)_{MISE} = (8.3e - 02)_{ivar} + (0.16)_{isb}$	$(12.00)_{MISE} = (7.9e + 02)_{ivar} + (0.88)_{isb}$
$f_3(x) = 0.3 \exp(-4(x+1)^2) + 0.7 \exp(16(x-1)^2), \sigma = 0.1,$	(8900.00) _{MISE} = (8900.00) _{ivar} +(6.00) _{isb}	$(0.52)_{MISE} = (0.16)_{ivar} + (0.35)_{isb}$	$(0.51)_{MISE} = (0.19)_{ivar} + (0.32)_{isb}$	$(15.00)_{MISE} = (14.00)_{ivar} + (0.12)_{isb}$
$f_{\rm g}({\rm x}) = 0.8 + \sin(6{\rm x}), \sigma = 1,$	$(2.3e + 09)_{MISE} =$ $(2.3e+09)_{ivar} + (8.7e+$ $05)_{isb}$	$(4.6e + 00)_{MISE} =$ $(4.1e+00)_{ivar} + (5.4e -$ $01)_{isb}$	$(6.5e + 01)_{MISE} =$ $(6.5e+01)_{ivar} + (1.2e -$ $01)_{isb}$	$(2.1e + 03)_{MISE} =$ $(2.1e+03)_{ivar} + (2.1e+00)_{isb}$
$f_5(x) = a \exp(-bx) + k_1 \sin(\frac{2\pi}{I_1}(x-10) + k_2 \sin(\frac{2\pi}{I_2}(x-30))), \sigma = 0.5,$	$(0.25882353)_{MSE} =$ $(0.25882353)_{ivar} +$ $(0.0001176471)_{isb}$	$(0.01411765)_{MISE} =$ $(0.00917647)_{ivar} +$ $(0.0057647059)_{isb}$	$(0.03176471)_{MISE} =$ $(0.02235294)_{ivar} +$ $(0.0092941176)_{isb}$	$(0.30588235)_{MISE} =$ $(0.30588235)_{ivar} +$ $(0.0006705882)_{isb}$