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Introduction

random forests

I have become increasingly popular in, e.g., genetics and

the neurosciences

I can deal with “small n large p”-problems, high-order

interactions, correlated predictor variables

I are used not only for prediction, but also to measure

variable importance

(advantage: RF variable importance measures capture

the effect of a variable in main effects and interactions

→ smarter for screening than univariate measures)
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Measuring variable importance

I Gini importance

mean Gini gain produced by Xj over all trees

(can be severely biased due to estimation bias and

mutiple testing; Strobl et al., 2007)

I permutation importance

mean decrease in classification accuracy after

permuting Xj over all trees

(unbiased when subsampling is used; Strobl et al., 2007)
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The permutation importance

within each tree t

VI (t)(xj) =

∑
i∈B

(t) I
(
yi = ŷ

(t)
i

)
∣∣∣B(t)

∣∣∣ −

∑
i∈B

(t) I
(
yi = ŷ

(t)
i ,πj

)
∣∣∣B(t)

∣∣∣
ŷ

(t)
i = f (t)(xi ) = predicted class before permuting

ŷ
(t)
i ,πj

= f (t)(xi ,πj
) = predicted class after permuting Xj

xi ,πj
= (xi ,1, . . . , xi ,j−1, xπj (i),j , xi ,j+1, . . . , xi ,p

)
Note: VI (t)(xj) = 0 by definition, if Xj is not in tree t



Measuring variable

importance

A new, conditional

importance

Conclusion

References

The permutation importance

over all trees:

VI (xj) =

∑ntree
t=1 VI (t)(xj)

ntree
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What null hypothesis does this permutation

scheme correspond to?

obs Y Xj Z

1 y1 xπj (1),j z1

...
...

...
...

i yi xπj (i),j zi

...
...

...
...

n yn xπj (n),j zn

H0 : Xj ⊥ Y ,Z or Xj ⊥ Y ∧ Xj ⊥ Z

P(Y ,Xj ,Z )
H0= P(Y ,Z ) · P(Xj)
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What null hypothesis does this permutation

scheme correspond to?

the current null hypothesis reflects independence of Xj from

both Y and the remaining predictor variables Z

⇒ a high variable importance can result from violation of

either one!
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Suggestion: Conditional permutation scheme

obs Y Xj Z

1 y1 xπj|Z=a(1),j z1 = a

3 y3 xπj|Z=a(3),j z3 = a

27 y27 xπj|Z=a(27),j z27 = a

6 y6 xπj|Z=b(6),j z6 = b

14 y14 xπj|Z=b(14),j z14 = b

33 y33 xπj|Z=b(33),j z33 = b
...

...
...

...

H0 : Xj ⊥ Y |Z

P(Y ,Xj |Z )
H0= P(Y |Z ) · P(Xj |Z )

or P(Y |Xj ,Z )
H0= P(Y |Z )
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Technically

I use any partition of the feature space for conditioning

I here: use binary partition already learned by tree
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Simulation study

I dgp: yi = β1 · xi ,1 + · · ·+β12 · xi ,12 + εi , εi
i .i .d .∼ N(0, 0.5)

I X1, . . . ,X12 ∼ N(0,Σ)

Σ =



1 0.9 0.9 0.9 0 · · · 0

0.9 1 0.9 0.9 0 · · · 0

0.9 0.9 1 0.9 0 · · · 0

0.9 0.9 0.9 1 0 · · · 0

0 0 0 0 1 · · · 0
...

...
...

...
...

. . . 0

0 0 0 0 0 0 1



Xj X1 X2 X3 X4 X5 X6 X7 X8 · · · X12

βj 5 5 2 0 -5 -5 -2 0 · · · 0
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Results
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Peptide-binding data

0
0.

00
5

un
co

nd
iti

on
al

co
nd

iti
on

al

0
0.

00
5

co
nd

iti
on

al

h2y8 flex8 pol3
*



Measuring variable

importance

A new, conditional

importance

Conclusion

References

R-Example

spurious correlation between shoe size and reading skills in

school-children

> mycf <- cforest(score ~ ., data = readingSkills,

+ control = cforest_unbiased(mtry = 2))

> varimp(mycf)

nativeSpeaker age shoeSize

12.62926 74.89542 20.01108

> varimp(mycf, conditional = TRUE)

nativeSpeaker age shoeSize

11.808192 46.995336 2.092454

from party 0.9-991
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Conclusion

I conditional permutation is expensive

I but gets us closer to the interpretation of

importance that we (statisticians) are used to

→ beta coefficients, partial correlations

I choice of mtry has a high impact
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General remarks

I default settings for mtry vary between implementations

e.g., for classification:

randomForest: mtry=
√

p

cforest: mtry= 5

small values of mtry may often be a good choice - but

not in the case of correlated predictors!

I make sure your results are stable before interpreting

importance rankings

fit another forest with a different random seed - if the

ranking changes increase ntree



Measuring variable

importance

A new, conditional

importance

Conclusion

References



Measuring variable

importance

A new, conditional

importance

Conclusion

References

Strobl, C., A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis

(2008). Conditional variable importance for random forests.

BMC Bioinformatics 9:307.

Strobl, C., A.-L. Boulesteix, A. Zeileis, and T. Hothorn (2007).

Bias in random forest variable importance measures:

Illustrations, sources and a solution. BMC Bioinformatics 8:25.


	Measuring variable importance
	A new, conditional importance
	Conclusion
	References

