A case study on using generalized additive models to fit credit rating scores

Marlene Müller, marlene.mueller@itwm.fraunhofer.de

This version: July 8, 2009, 14:32

Contents

Application: Credit Rating

Aim of this Talk

Case Study German Credit Data Australian Credit Data French Credit Data UC2005 Credit Data

Simulation Study

Conclusions

Appendix: Further Plots Australian Credit Data French Credit Data UC2005 Credit Data

Application: Credit Rating

- Basel II: capital requirements of a bank are adapted to the individual credit portfolio
- core terms: determine rating score and subsequently default probabilities (PDs) as a function of some explanatory variables
- further terms: loss given default, portfolio dependence structure
- in practice: often classical logit/probit-type models to estimate linear predictors (scores) and probabilities (PDs)
- statistically: 2-group classification problem

risk management issues

- credit risk is ony one part of a bank's total risk:
 → will be aggregated with other risks
- credit risk estimation from historical data:
 stress-tests to simulate future extreme situations
 need to easily adapt the rating system to possible future chang
 possible need to extrapolate to segments without observations

Application: Credit Rating

- Basel II: capital requirements of a bank are adapted to the individual credit portfolio
- core terms: determine rating score and subsequently default probabilities (PDs) as a function of some explanatory variables
- further terms: loss given default, portfolio dependence structure
- in practice: often classical logit/probit-type models to estimate linear predictors (scores) and probabilities (PDs)
- statistically: 2-group classification problem

risk management issues

- credit risk is ony one part of a bank's total risk: \rightsquigarrow will be aggregated with other risks
- credit risk estimation from historical data:
 - \rightsquigarrow stress-tests to simulate future extreme situations
 - \sim need to easily adapt the rating system to possible future changes
 - \rightsquigarrow possible need to extrapolate to segments without observations

▶ raw data:

 X_j measurements of several variables ("risk factors")

(nonlinear) transformation:

$$X_j o \widetilde{X}_j = m_j(X_j)$$

ightarrow handle outliers, allow for nonlinear dependence on raw risk factors

rating score:

$$S = w_1 \widetilde{X}_1 + \ldots + w_d \widetilde{X}_d$$

default probability:

$$PD = P(Y = 1|X) = G(w_1\widetilde{X}_1 + \ldots + w_d\widetilde{X}_d)$$

▶ raw data:

 X_j measurements of several variables ("risk factors")

► (nonlinear) transformation:

$$X_j \rightarrow \widetilde{X}_j = m_j(X_j)$$

 \sim handle outliers, allow for nonlinear dependence on raw risk factors

rating score:

$$S = w_1 \widetilde{X}_1 + \ldots + w_d \widetilde{X}_d$$

default probability:

$$PD = P(Y = 1|X) = G(w_1\widetilde{X}_1 + \ldots + w_d\widetilde{X}_d)$$

▶ raw data:

X_j measurements of several variables ("risk factors")

▶ (nonlinear) transformation:

$$X_j o \widetilde{X}_j = m_j(X_j)$$

 \sim handle outliers, allow for nonlinear dependence on raw risk factors

rating score:

$$S = w_1 \widetilde{X}_1 + \ldots + w_d \widetilde{X}_d$$

default probability:

$$PD = P(Y = 1|X) = G(w_1\widetilde{X}_1 + \ldots + w_d\widetilde{X}_d)$$

▶ raw data:

X_j measurements of several variables ("risk factors")

▶ (nonlinear) transformation:

$$X_j o \widetilde{X}_j = m_j(X_j)$$

 \sim handle outliers, allow for nonlinear dependence on raw risk factors

rating score:

$$S = w_1 \widetilde{X}_1 + \ldots + w_d \widetilde{X}_d$$

default probability:

$$PD = P(Y = 1 | X) = G(w_1 \widetilde{X}_1 + \ldots + w_d \widetilde{X}_d)$$

▶ raw data:

 X_j measurements of several variables ("risk factors")

▶ (nonlinear) transformation:

$$X_j o \widetilde{X}_j = m_j(X_j)$$

 \sim handle outliers, allow for nonlinear dependence on raw risk factors

rating score:

$$S = w_1 \widetilde{X}_1 + \ldots + w_d \widetilde{X}_d$$

default probability:

$$PD = P(Y = 1|X) = G(w_1\widetilde{X}_1 + \ldots + w_d\widetilde{X}_d)$$

Aim of this Talk

case study on (cross-sectional) rating data

- compare different approaches to generalized additive models (GAM)
- consider models that allow for additional categorical variables \sim partial linear terms (combination of GAM/GPLM)
- generalized additive models allow for a simultaneous fit of the transformations from the raw data, the linear rating score and the default probabilities

Outline of the Study

▶ (credit	data	case	study:	4	credit	datasets
-----	--------	------	------	--------	---	--------	----------

				regressors	5
dataset	sample	defaults	continuous	discrete	categorical
German Credit	1000	30.00%	3	-	17
Australian Credit	678	55.90%	3	1	8
French Credit	8178	5.86%	5	3	15
UC2005 Credit	5058	23.92%	12	3	21

- differences between different approaches?
- improvement of default predictions?

▶ simulation study: comparison of additive model (AM) and GAM fits

- differences between different approaches?
- what if regressors are concurve? (nonlinear version of multicollinear)
- do sample size and default rate matter?

Generalized Additive Model

logit/probit are special cases of the generalized linear model (GLM)

$$E(Y|X) = G\left(X^{\top}\beta\right)$$

"classic" generalized additive model

$$E(Y|X) = G\left\{c + \sum_{j=1}^{p} m_j(X_j)\right\}$$
 m_j nonparametric

generalized additive partial linear model (semiparametric GAM)

$$E(Y|\boldsymbol{X}_1, \boldsymbol{X}_2) = G\left\{ \boldsymbol{c} + \boldsymbol{X}_1^\top \boldsymbol{\beta} + \sum_{j=1}^p m_j(\boldsymbol{X}_{2j}) \right\} \quad m_j \text{ nonparar}$$

linear part

- allows for known transformation functions
- allows to add / control for categorical regressors

Generalized Additive Model

logit/probit are special cases of the generalized linear model (GLM)

$$E(Y|X) = G\left(X^{\top}\beta\right)$$

"classic" generalized additive model

$$E(Y|X) = G\left\{c + \sum_{j=1}^{p} m_j(X_j)\right\}$$
 m_j nonparametric

generalized additive partial linear model (semiparametric GAM)

$$E(Y|X_1, X_2) = G\left\{ c + X_1^\top eta + \sum_{j=1}^p m_j(X_{2j})
ight\}$$
 m_j nonparame

linear part

- allows for known transformation functions
- allows to add / control for categorical regressors

Generalized Additive Model

logit/probit are special cases of the generalized linear model (GLM)

$$E(Y|X) = G\left(X^{\top}\beta\right)$$

"classic" generalized additive model

$$E(Y|X) = G\left\{c + \sum_{j=1}^{p} m_j(X_j)\right\}$$
 m_j nonparametric

generalized additive partial linear model (semiparametric GAM)

$$E(Y|X_1,X_2) = G\left\{c + X_1^\top eta + \sum_{j=1}^p m_j(X_{2j})
ight\} \quad m_j ext{ nonparametric}$$

linear part

- allows for known transformation functions
- allows to add / control for categorical regressors

R "Standard" Tools

two main approaches for GAM in 📿

- **gam::gam** \rightarrow backfitting with local scoring (Hastie and Tibshirani; 1990)
- mgcv::gam → penalized regression splines (Wood; 2006)
- ~→ compare these procedures under the default settings of gam::gam and mgcv::gam

competing estimators:

- **logit** binary GLM with $G(u) = 1/\{1 + \exp(-u)\}$ (logistic cdf as link)
- logit2, logit3 binary GLM with 2nd / 3rd order polynomial terms for the continuous regressors
- logitc binary GLM with continuous regressors categorized (4–5 levels)
- **gam** binary GAM using gam::gam with s() terms for continuous
- mgcv binary GAM using mgcv::gam

German Credit Data

from http://www.stat.uni-muenchen.de/service/datenarchiv/kredit/kredit_e.html

			regressors		
dataset name	sample	defaults	continuous	discrete	categorical
German	1000	30.00%	3	-	17

- 3 continuous regressors: age, amount, duration (time to maturity)
- use 10 CV subsamples for validation
- stratified data (true default rate \approx 5%)

important findings:

- some observation(s) that seem to confuse mgcv::gam in one CV subsample (\rightarrow see following slides)
- however, mgcv::gam seems to improve deviance and discriminatory power w.r.t. gam::gam
- estimation times of mgcv::gam are between **4** to **7** times higher than for gam::gam (not more than around a second, though)
- if we only use the continuous regressors: both GAM estimators are comparable to logit cubic additive functions

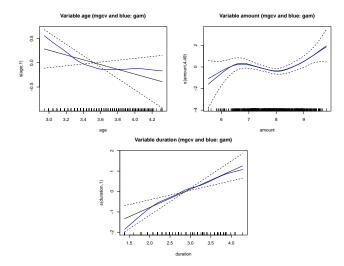
German Credit Data

▶ from http://www.stat.uni-muenchen.de/service/datenarchiv/kredit/kredit_e.html

			regressors		
dataset name	sample	defaults	continuous	discrete	categorical
German	1000	30.00%	3	-	17

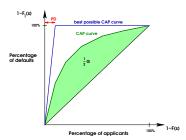
- 3 continuous regressors: age, amount, duration (time to maturity)
- use 10 CV subsamples for validation
- > stratified data (true default rate \approx 5%)
- important findings:
 - some observation(s) that seem to confuse <code>mgcv::gam</code> in one CV subsample (\rightarrow see following slides)
 - however, mgcv::gam seems to improve deviance and discriminatory power w.r.t. gam::gam
 - estimation times of mgcv::gam are between **4** to **7** times higher than for gam::gam (not more than around a second, though)
 - if we only use the continuous regressors: both GAM estimators are comparable to logit cubic additive functions

German Credit Data: Additive Functions



How to Compare Binary GLM Fits?

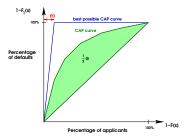
- ▶ preferably by out-of-sample validation ~> block cross-validation approach: leave out subsamples of x% from the fitting procedure, estimate from the remaining (100-x)% and calculate validation criteria from the x% left-out
- ► two criteria for comparison: deviance (→ goodness of fit) and accuracy ratios AR from CAP curves (→ discriminatory power)
- ► CAP curve (Lorenz curve) and the accuracy ratio AR:
 - plot the empirical cdf of the fitted scores against the empirical cdf of the fitted default sample scores (precisely $1 \hat{F}$ vs. $1 \hat{F}(.|Y = 1)$)
 - AR is the area between CAP curve and diagonal in relation to the corresponding area for the best possible CAP curve (best possible ≅ perfect separation)
 - relation to ROC: compares $\hat{F}(.|Y = 0)$ and $\hat{F}(.|Y = 1)$ and it holds



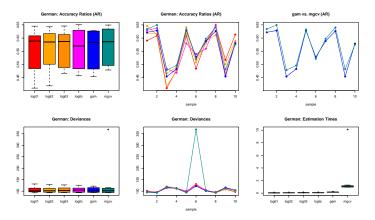
How to Compare Binary GLM Fits?

- ▶ preferably by out-of-sample validation ~> block cross-validation approach: leave out subsamples of x% from the fitting procedure, estimate from the remaining (100-x)% and calculate validation criteria from the x% left-out
- ► two criteria for comparison: deviance (→ goodness of fit) and accuracy ratios AR from CAP curves (→ discriminatory power)
- ► CAP curve (Lorenz curve) and the accuracy ratio AR:
 - plot the empirical cdf of the fitted scores against the empirical cdf of the fitted default sample scores (precisely $1 \hat{F}$ vs. $1 \hat{F}(.|Y = 1)$)
 - AR is the area between CAP curve and diagonal in relation to the corresponding area for the best possible CAP curve (best possible ≅ perfect separation)
 - relation to ROC: compares $\widehat{F}(.|Y = 0)$ and $\widehat{F}(.|Y = 1)$ and it holds

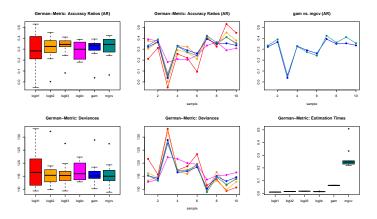
AR = 2 AUC - 1



German Credit Data: Comparison



German Credit Data: Models with only Continuous Regressors



Australian Credit Data

- from http://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval)
- used for estimation:

			regressors		
dataset name	sample	defaults	continuous	discrete	categorical
Australian	678	55.90%	3	1	8

- use only 7 CV subsamples for validation
- original A13 and A14 were dropped since actually multicollinear with A10, some observations were dropped because of very few categories
- A10 was transformed to log(1 + A10), nevertheless used only as a linear predictor (as half of the observations have the same value)
- important findings:
 - essentially, the estimated additive function for A2 differs between mgcv::gam and gam::gam
 - gami:gam mostly outperforms than all other estimates (recall, that however the number of CV subsamples is rather small!)
 - estimation times of mgcv::gam are around **3** to **5** times higher than for gam::gam (less than a second, though)

French Credit Data

data were already analyzed with GPLMs in Müller and Härdle (2003), here used for estimation:

			regressors			
dataset name	sample	defaults	continuous	discrete	categorical	
French	8178	5.86%	5	3	15	

- use the same preprocessing as in as in Müller and Härdle (2003)
- the original estimation + validation samples were merged, use 20 CV subsamples for validation instead
- continuous variables are X1, X2, X3, X4 and X6, in particular X3, X4 and X6 are known to have nonlinear form in a GAM
- ► important findings:
 - it is confirmed that additive functions for X3, X4 and X6 should be modelled by a nonlinear function be nonlinear
 - again observation(s) "confusing" mgcv::gam in one of the subsamples
 - all estimates show similar discriminatory power, though with a slightly better performance for both mgcv::gam and gam::gam
 - estimation times of mgcv::gam are around **15** to **24** times higher than for gam::gam (for the largest model: 20-40 sec. on a 3Ghz Intel CPU for the subsamples of about 7800 observations)

UC2005 Credit Data

data from the 2005 UC data mining competitionwere already analyzed with GPLMs in Müller and Härdle (2003), here used for estimation:

			regressors		
dataset name	sample	defaults	continuous	discrete	categorical
UC2005	5058	23.92%	12	3	21

- the original estimation + validation + quiz samples were merged, use again 20 CV subsamples for validation
- > stratified data (true default rate \approx 5%)
- several of the variables have been preprocessed with a log-transform or to binary
- in general, the data haven't been very carefully analysed, it's use is rather meant a "proof-of concept"
- important findings:
 - there are again observations "confusing" mgcv::gam in one of the subsamples
 - performance of mgcv::gam and gam::gam w.r.t. is very similar and outperforms the other approaches (closest to them is the logit fit with cubic additive functions)
 - estimation times of mgcv::gam are around 8 to 40 times higher than for gam::gam (for the largest model: 5-8 min on a 3Ghz Intel CPU for up to 400 seconds for the subsamples of about 4800 observations)

Simulation Study for (G)PLM

 $\boldsymbol{E}(\boldsymbol{Y}|\boldsymbol{X},T) = \beta_1 \boldsymbol{X}_1 + \beta_2 \boldsymbol{X}_2 + \boldsymbol{m}(T)$

which of the (G)AM estimators is preferable ...?

- ▶ ... to fit the additive component functions and/or the regression function?
 - w.r.t. discriminatory power in the GPLM/GAM cases?
- ▶ ... from a practical point of view (comp. speed, numerical stability etc.)?

simulation setup:

 $\beta_1 = 1, \quad \beta_2 = -1, \quad m(t) = 1.5 \cos(\pi t) + c$

 $n_{sim} = 1000, \quad n \in \{100, 1000, 10000\}, \quad \rho \in \{0.0, 0.7\}, \quad c \in \{0, -1, -2\}$

- X_2 and T are nonlinearly dependent (if $\rho = 0.7$) or independent otherwise • sample size n up to 10000 which is a possible size for credit data
- the intercept c controls for the default rate (15%–50%) in the GPLM

Simulation Study for (G)PLM

 $E(Y|X,T) = \beta_1 X_1 + \beta_2 X_2 + m(T)$

which of the (G)AM estimators is preferable ...?

- ... to fit the additive component functions and/or the regression function?
- w.r.t. discriminatory power in the GPLM/GAM cases?
- ... from a practical point of view (comp. speed, numerical stability etc.)?

simulation setup:

 $\beta_1 = 1, \quad \beta_2 = -1, \quad m(t) = 1.5\cos(\pi t) + c$

 $X_1, U, T \sim \text{Uniform}[-1, 1], \quad X_2 \sim m(\rho T + (1 - \rho)U) \text{ (centered)}$

 $n_{sim} = 1000, \quad n \in \{100, 1000, 10000\}, \quad \rho \in \{0.0, 0.7\}, \quad c \in \{0, -1, -2\}$

- X_2 and T are nonlinearly dependent (if $\rho = 0.7$) or independent otherwise • sample size n up to 10000 which is a possible size for credit data
- the intercept c controls for the default rate (15%–50%) in the GPLM

Simulation Study for (G)PLM

 $E(Y|X,T) = \beta_1 X_1 + \beta_2 X_2 + m(T)$

which of the (G)AM estimators is preferable ...?

- ... to fit the additive component functions and/or the regression function?
- w.r.t. discriminatory power in the GPLM/GAM cases?
- ... from a practical point of view (comp. speed, numerical stability etc.)?

simulation setup:

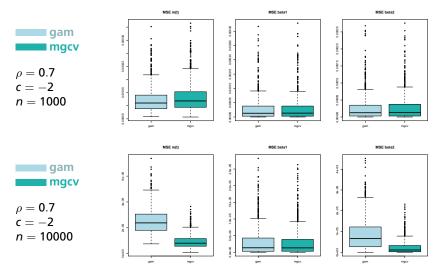
$$\beta_1 = 1, \quad \beta_2 = -1, \quad m(t) = 1.5 \cos(\pi t) + c$$

X₁, U, T ~ Uniform[-1,1], X₂ ~ m (ρ T + (1 - ρ)U) (centered)

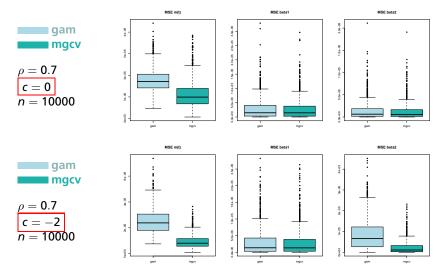
 $n_{sim} = 1000, \quad n \in \{100, 1000, 10000\}, \quad \rho \in \{0.0, 0.7\}, \quad c \in \{0, -1, -2\}$

- > X_2 and T are nonlinearly dependent (if $\rho = 0.7$) or independent otherwise
- sample size n up to 10000 which is a possible size for credit data
- ▶ the intercept c controls for the default rate (15%–50%) in the GPLM

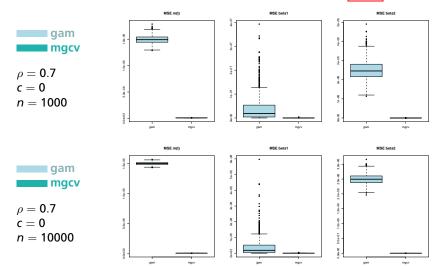
Simulation Study: Additive Components for GPLM



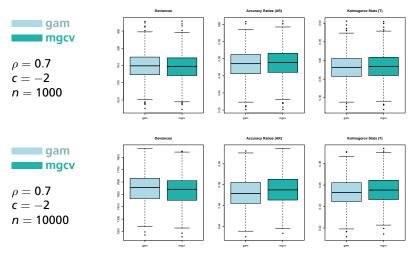
Simulation Study: Independent Components vs. Dependent



Simulation Study: Comparison with Components for PLM

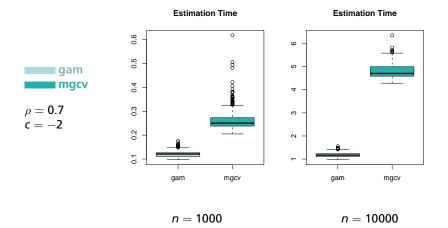


Simulation Study: Deviance and Discriminatory Power for GPLM



in fact, most of the gam::gam deviances are larger here than the mgcv::gam deviances and gam::gam fits have smaller discriminatory power

Simulation Study: Estimation Times for GPLM



(estimation times in sec. on a Xeon 2.50GHz)

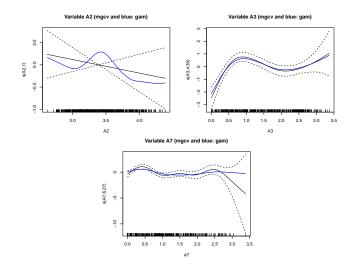
Conclusions

- typically, categorical regressors improve fit significantly, therefore estimation methods for credit data should adequately use these
- backfitting + local scoring (gam::gam) provides fast and numerically stable results
- there is however clear indication, that penalized regression splines (mgcv::gam) may provide more precise estimates of the additive component functions; its current drawbacks are:
 - estimation time (increasing with model complexity, categorical variables)
 - effects are to be seen only in large samples
- ► thus: no clear recommendation, no "ultimate method" ~ clearly topics for more research

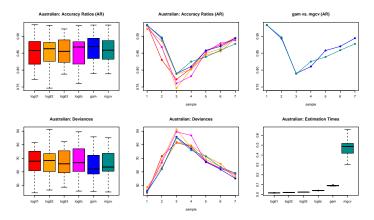
References

- Härdle, W., Müller, M., Sperlich, S. and Werwatz, A. (2004). Nonparametric and Semiparametric Modeling: An Introduction, Springer, New York.
- Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models, Vol. 43 of Monographs on Statistics and Applied Probability, Chapman and Hall, London.
- Müller, M. (2001). Estimation and testing in generalized partial linear models a comparative study, *Statistics and Computing* **11**: 299–309.
- Müller, M. and Härdle, W. (2003). Exploring credit data, in G. Bol, G. Nakhaeizadeh, S. Rachev, T. Ridder and K.-H. Vollmer (eds), Credit Risk - Measurement, Evaluation and Management, Physica-Verlag.
- Speckman, P. E. (1988). Regression analysis for partially linear models, Journal of the Royal Statistical Society, Series B 50: 413–436.
- Wood, S. N. (2006). *Generalized Additive Models: An Introduction with R*, Texts in Statistical Science, Chapman and Hall, London.

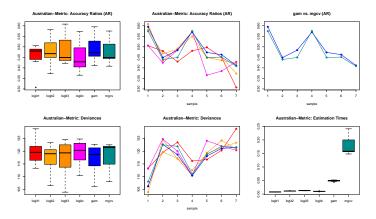
Australian Credit Data: Additive Functions



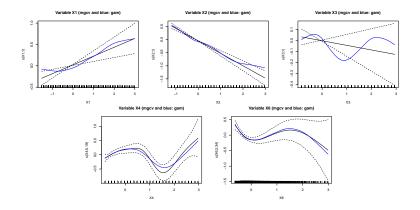
Australian Credit Data: Comparison



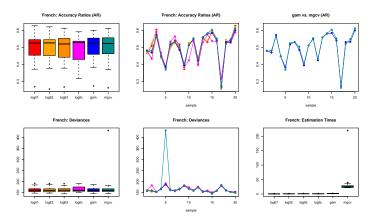
Australian Credit Data: Models with only Continuous Regressors



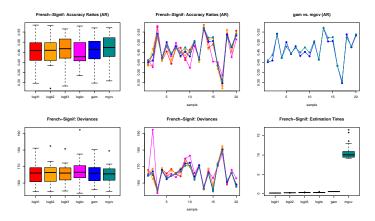
French Credit Data: Additive Functions



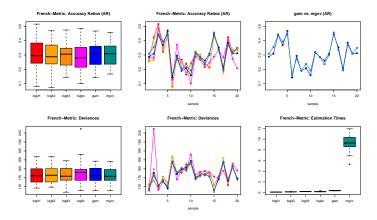
French Credit Data: Comparison



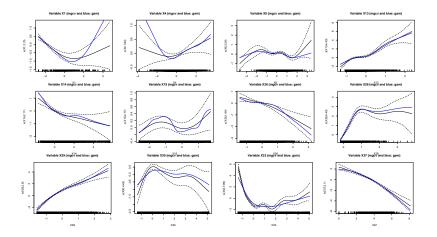
French Credit Data: Models with only Significant Regressors



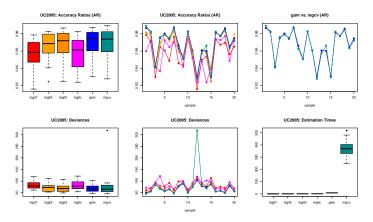
French Credit Data: Models with only Metric Regressors



UC2005 Credit Data: Additive Functions



UC2005 Credit Data: Comparison



UC2005 Credit Data: Models with only Metric Regressors

