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Application: Credit Rating

- Basel II: capital requirements of a bank are adapted to the individual credit
portfolio

- core terms: determine rating score and subsequently default probabilities
(PDs) as a function of some explanatory variables

- further terms: loss given default, portfolio dependence structure

- in practice: often classical logit/probit-type models to estimate linear
predictors (scores) and probabilities (PDs)

- statistically: 2-group classification problem

risk management issues

- credit risk is ony one part of a bank’s total risk:
; will be aggregated with other risks

- credit risk estimation from historical data:
; stress-tests to simulate future extreme situations
; need to easily adapt the rating system to possible future changes
; possible need to extrapolate to segments without observations
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(Simplified) Development of Rating Score and Default Probability

� raw data:

Xj measurements of several variables (“risk factors”)

� (nonlinear) transformation:

Xj → eXj = mj(Xj)

; handle outliers, allow for nonlinear dependence on raw risk factors

� rating score:
S = w1

eX1 + . . . + wd
eXd

� default probability:

PD = P(Y = 1|X) = G(w1
eX1 + . . . + wd

eXd)

(where G is e.g. the logistic or gaussian cdf ; logit or probit)
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Aim of this Talk

case study on (cross-sectional) rating data

- compare different approaches to generalized additive models (GAM)

- consider models that allow for additional categorical variables
; partial linear terms (combination of GAM/GPLM)

� generalized additive models allow for a simultaneous fit of the
transformations from the raw data, the linear rating score and the default
probabilities
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Outline of the Study

� credit data case study: 4 credit datasets

regressors
dataset sample defaults continuous discrete categorical
German Credit 1000 30.00% 3 – 17
Australian Credit 678 55.90% 3 1 8
French Credit 8178 5.86% 5 3 15
UC2005 Credit 5058 23.92% 12 3 21

- differences between different approaches?
- improvement of default predictions?

� simulation study: comparison of additive model (AM) and GAM fits

- differences between different approaches?
- what if regressors are concurve? (nonlinear version of multicollinear)
- do sample size and default rate matter?
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Generalized Additive Model

� logit/probit are special cases of the generalized linear model (GLM)

E(Y |X) = G
“

X
⊤

β
”

� “classic” generalized additive model

E(Y |X) = G

8

<

:

c +

p
X

j=1

mj(Xj)

9

=

;

mj nonparametric

� generalized additive partial linear model (semiparametric GAM)

E(Y |X1, X2) = G

8

<

:

c + X
⊤

1 β +

p
X

j=1

mj(X2j)

9

=

;

mj nonparametric

linear part

- allows for known transformation functions

- allows to add / control for categorical regressors
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R “Standard” Tools

two main approaches for GAM in

- gam::gam ; backfitting with local scoring (Hastie and Tibshirani; 1990)

- mgcv::gam ; penalized regression splines (Wood; 2006)

; compare these procedures under the default settings of gam::gam and
mgcv::gam

competing estimators:

- logit binary GLM with G(u) = 1/{1 + exp(−u)} (logistic cdf as link)

- logit2, logit3 binary GLM with 2nd / 3rd order polynomial terms for the
continuous regressors

- logitc binary GLM with continuous regressors categorized (4–5 levels)

- gam binary GAM using gam::gam with s() terms for continuous

- mgcv binary GAM using mgcv::gam
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German Credit Data

� from http://www.stat.uni-muenchen.de/service/datenarchiv/kredit/kredit_e.html

regressors
dataset name sample defaults continuous discrete categorical
German 1000 30.00% 3 – 17

� 3 continuous regressors: age, amount, duration (time to maturity)

� use 10 CV subsamples for validation

� stratified data (true default rate ≈ 5%)

� important findings:
- some observation(s) that seem to confuse mgcv::gam in one CV subsample

(→ see following slides)
- however, mgcv::gam seems to improve deviance and discriminatory power

w.r.t. gam::gam
- estimation times of mgcv::gam are between 4 to 7 times higher than for

gam::gam (not more than around a second, though)
- if we only use the continuous regressors: both GAM estimators are comparable

to logit cubic additive functions
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German Credit Data: Additive Functions
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How to Compare Binary GLM Fits?

� preferably by out-of-sample validation ; block cross-validation approach:
leave out subsamples of x% from the fitting procedure, estimate from the
remaining (100-x)% and calculate validation criteria from the x% left-out

� two criteria for comparison: deviance (→ goodness of fit) and accuracy
ratios AR from CAP curves (→ discriminatory power)

� CAP curve (Lorenz curve) and the accuracy ratio AR:

- plot the empirical cdf of the fitted scores
against the empirical cdf of the fitted

default sample scores (precisely 1 − bF vs.

1 − bF(.|Y = 1))

- AR is the area between CAP curve and
diagonal in relation to the corresponding
area for the best possible CAP curve (best
possible ∼= perfect separation)

- relation to ROC: compares bF(.|Y = 0) and
bF(.|Y = 1) and it holds

AR = 2 AUC−1

PD

1−F(s)

best possible CAP curve

Percentage

100%

100%

1−F (s)
1

CAP curve

2

1_
G

Percentage of applicants

of defaults
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German Credit Data: Comparison
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Figure: Out of sample comparison (blockwise CV with 10 blocks) for various estimators,
accuracy ratios from CAP curves (upper panels), deviance values and estimation times
(lower panels)
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German Credit Data: Models with only Continuous Regressors
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Australian Credit Data

� from http://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval)

� used for estimation:

regressors
dataset name sample defaults continuous discrete categorical
Australian 678 55.90% 3 1 8

� use only 7 CV subsamples for validation

� original A13 and A14 were dropped since actually multicollinear with A10, some
observations were dropped because of very few categories

� A10 was transformed to log(1 + A10), nevertheless used only as a linear predictor
(as half of the observations have the same value)

� important findings:

- essentially, the estimated additive function for A2 differs between mgcv::gam
and gam::gam

- gam::gam mostly outperforms than all other estimates (recall, that however the
number of CV subsamples is rather small!)

- estimation times of mgcv::gam are around 3 to 5 times higher than for
gam::gam (less than a second, though)
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French Credit Data

� data were already analyzed with GPLMs in Müller and Härdle (2003), here used for
estimation:

regressors
dataset name sample defaults continuous discrete categorical
French 8178 5.86% 5 3 15

� use the same preprocessing as in as in Müller and Härdle (2003)

� the original estimation + validation samples were merged, use 20 CV subsamples for
validation instead

� continuous variables are X1, X2, X3, X4 and X6, in particular X3, X4 and X6 are
known to have nonlinear form in a GAM

� important findings:

- it is confirmed that additive functions for X3, X4 and X6 should be modelled by
a nonlinear function be nonlinear

- again observation(s) "confusing" mgcv::gam in one of the subsamples
- all estimates show similar discriminatory power, though with a slightly better

performance for both mgcv::gam and gam::gam
- estimation times of mgcv::gam are around 15 to 24 times higher than for

gam::gam (for the largest model: 20-40 sec. on a 3Ghz Intel CPU for the
subsamples of about 7800 observations)
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UC2005 Credit Data

� data from the 2005 UC data mining competitionwere already analyzed with GPLMs
in Müller and Härdle (2003), here used for estimation:

regressors
dataset name sample defaults continuous discrete categorical
UC2005 5058 23.92% 12 3 21

� the original estimation + validation + quiz samples were merged, use again 20 CV
subsamples for validation

� stratified data (true default rate ≈ 5%)

� several of the variables have been preprocessed with a log-transform or to binary

� in general, the data haven’t been very carefully analysed, it’s use is rather meant a
“proof-of concept”

� important findings:

- there are again observations "confusing" mgcv::gam in one of the subsamples
- performance of mgcv::gam and gam::gam w.r.t. is very similar and

outperforms the other approaches (closest to them is the logit fit with cubic
additive functions)

- estimation times of mgcv::gam are around 8 to 40 times higher than for
gam::gam (for the largest model: 5-8 min on a 3Ghz Intel CPU for up to 400
seconds for the subsamples of about 4800 observations)
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Simulation Study for (G)PLM

E(Y |X, T) = β1X1 + β2X2 + m(T)

which of the (G)AM estimators is preferable ...?

� ... to fit the additive component functions and/or the regression function?

� ... w.r.t. discriminatory power in the GPLM/GAM cases?

� ... from a practical point of view (comp. speed, numerical stability etc.)?

simulation setup:

β1 = 1, β2 = −1, m(t) = 1.5 cos(πt) + c

X1, U, T ∼ Uniform[-1,1], X2 ∼ m (ρT + (1 − ρ)U) (centered)

nsim = 1000, n ∈ {100, 1000, 10000}, ρ ∈ {0.0, 0.7}, c ∈ {0,−1,−2}

� X2 and T are nonlinearly dependent (if ρ = 0.7) or independent otherwise

� sample size n up to 10000 which is a possible size for credit data

� the intercept c controls for the default rate (15%–50%) in the GPLM
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Simulation Study: Additive Components for GPLM
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Simulation Study: Independent Components vs. Dependent
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Simulation Study: Comparison with Components for PLM
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Simulation Study: Deviance and Discriminatory Power for GPLM

gam
mgcv

ρ = 0.7
c = −2

n = 1000

gam mgcv

65
0

70
0

75
0

80
0

85
0

Deviances

gam mgcv

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Accuracy Ratios (AR)

gam mgcv

0.
30

0.
35

0.
40

0.
45

0.
50

Kolmogorov Stats (T)

gam
mgcv

ρ = 0.7
c = −2

n = 10000

gam mgcv

72
00

73
00

74
00

75
00

76
00

77
00

78
00

Deviances

gam mgcv

0.
44

0.
46

0.
48

0.
50

Accuracy Ratios (AR)

gam mgcv

0.
32

0.
34

0.
36

0.
38

Kolmogorov Stats (T)

in fact, most of the gam::gam deviances are larger here than the mgcv::gam deviances

and gam::gam fits have smaller discriminatory power
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Simulation Study: Estimation Times for GPLM
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Conclusions

� typically, categorical regressors improve fit significantly, therefore
estimation methods for credit data should adequately use these

� backfitting + local scoring (gam::gam) provides fast and numerically stable
results

� there is however clear indication, that penalized regression splines
(mgcv::gam) may provide more precise estimates of the additive
component functions; its current drawbacks are:

- estimation time (increasing with model complexity, categorical variables)
- effects are to be seen only in large samples

� thus: no clear recommendation, no “ultimate method”
; clearly topics for more research
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Australian Credit Data: Additive Functions

3.0 3.5 4.0

−
1.

0
−

0.
5

0.
0

0.
5

A2

s(
A

2,
1)

Variable A2 (mgcv and blue: gam)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
3

−
2

−
1

0
1

2
3

A3

s(
A

3,
4.

35
)

Variable A3 (mgcv and blue: gam)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
10

−
5

0

A7

s(
A

7,
6.

27
)

Variable A7 (mgcv and blue: gam)

24



Australian Credit Data: Comparison
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Figure: Out of sample comparison (blockwise CV with 7 blocks) for various estimators,
accuracy ratios from CAP curves (upper panels), deviance values and estimation times
(lower panels)
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Australian Credit Data: Models with only Continuous Regressors
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Figure: Out of sample comparison (blockwise CV with 7 blocks) for various estimators,
accuracy ratios from CAP curves (upper panels), deviance values and estimation times
(lower panels)
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French Credit Data: Additive Functions
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French Credit Data: Comparison
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Figure: Out of sample comparison (blockwise CV with 20 blocks) for various estimators,
accuracy ratios from CAP curves (upper panels), deviance values and estimation times
(lower panels)
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French Credit Data: Models with only Significant Regressors
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Figure: Out of sample comparison (blockwise CV with 20 blocks) for various estimators,
accuracy ratios from CAP curves (upper panels), deviance values and estimation times
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French Credit Data: Models with only Metric Regressors
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Figure: Out of sample comparison (blockwise CV with 20 blocks) for various estimators,
accuracy ratios from CAP curves (upper panels), deviance values and estimation times
(lower panels)
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UC2005 Credit Data: Additive Functions
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UC2005 Credit Data: Comparison
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Figure: Out of sample comparison (blockwise CV with 20 blocks) for various estimators,
accuracy ratios from CAP curves (upper panels), deviance values and estimation times
(lower panels)
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UC2005 Credit Data: Models with only Metric Regressors
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Figure: Out of sample comparison (blockwise CV with 20 blocks) for various estimators,
accuracy ratios from CAP curves (upper panels), deviance values and estimation times
(lower panels)
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