An R package for analyzing truncated data

Carla Moreira^{1*}, Jacobo de Uña-Álvarez¹ and Rosa M. Crujeiras²

 1 Department of Statistics and OR, University of Vigo 2 Department of Statistics and OR, University of Santiago de Compostela

*carlamgmm@gmail.com

・ロト ・回ト ・ヨト ・

Introduction	Algorithms for DTD	Package description	Conclusions

Outline

프 > 프

Motivation examples

- Astronomy
- Epidemiology
- Economy
- Survival Analysis

In these cases, we must apply specialized statistical models and methods due the need to accommodate the event of losses in the sample, such as grouping, censoring or truncation.

Introduction	Algorithms for DTD	Package description	Conclusions
T	Cul		

Truncation Scheme

			_	_	_	
Moreira et al.	useR! 2009	DTDA package				4/30

Introduction	Algorithms for DTD	Package description	Conclusions
Truncatio	n Scheme		

Introduction	Algorithms for DTD	Package description	Conclusions
Truncatio	n Scheme		

Moreira et al.	useR! 2009	DTDA package	4/30

Truncation Scheme

- $\bullet\,$ Let X^* be the ultimate time of interest with df F
- $\bullet~(U^*,V^*)$ the pair of truncation times, with joint df K
- $\bullet~$ We observe (U^*,X^*,V^*) if and only if $U^*\leq X^*\leq V^*$
- Let $(U_i, X_i, V_i), i = 1, ..., n$ be the observed data.

Under the assumption of independence between X^* and (U^*, V^*) :

The full likelihood is given by:

$$L_n(f,k) = \prod_{j=1}^n \frac{f_j k_j}{\sum_{i=1}^n F_i k_i}$$

Moreira et al.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 = のへで

Truncation Scheme

Where:

•
$$f = (f_1, f_2, ..., f_n)$$

• $k = (k_1, k_2, ..., k_n)$
• $F_i = \sum_{m=1}^n f_m J_{i_m}$

and

$$J_{i_m} = I_{[U_i \leq X_m \leq V_i]} = 1 \quad \text{if} \quad U_i \leq X_m \leq V_i,$$

or zero otherwise.

As noted by Shen (2008):

$$L_{n}(f,k) = \prod_{j=1}^{n} \frac{f_{j}}{F_{j}} \times \prod_{j=1}^{n} \frac{F_{j}k_{j}}{\sum_{i=1}^{n} F_{i}k_{i}} = L_{1}(f) \times L_{2}(f,k)$$

Moreira et al.	useR! 2009	DTDA package	6/30
----------------	------------	--------------	------

Efron-Petrosian estimators

The condicional NPMLE of F (Efron-Petrosian, 1999) is defined as the maximizer of $L_1(f)$.

$$\frac{1}{\hat{f}_j} = \sum_{i=1}^n J_{ij} \times \frac{1}{\hat{F}_i}, \quad j = 1, ..., n$$

where
$$\hat{F}_i = \sum_{m=1}^n \hat{f}_m J_{im}.$$

This equation was used by Efron and Petrosian (1999) to introduce the EM algorithm to compute \hat{f} .

EM algorithm from Efron and Petrosian (1999)

- **EP1.** Compute the initial estimate $\hat{F}_{(0)}$ corresponding to $\hat{f}_{(0)} = (1/n, ..., 1/n);$
- **EP2.** Apply (1) to get an improved estimator $\hat{f}_{(1)}$ to compute the $\hat{F}_{(1)}$ pertaining to $\hat{f}_{(1)}$;
- **EP3.** Repeat Step EP2 until convergence criterion is reached.

Shen Estimator

Interchanging the roles of X's and (U_i, V_i) :

$$L_n(f,k) = \prod_{j=1}^n \frac{k_j}{K_j} \times \prod_{j=1}^n \frac{K_j f_j}{\sum_{i=1}^n K_i f_i} = L_1(k) \times L_2(k,f)$$

where

$$K_{i} = \sum_{m=1}^{n} k_{m} I_{[U_{m} \le X_{i} \le V_{m}]} = \sum_{m=1}^{n} k_{m} J_{im}$$

and maximizing $L_1(k)$:

$$\frac{1}{\hat{k}_j} = \sum_{i=1}^n J_{ji} \frac{1}{\hat{K}_i}, \quad j = 1, ..., n$$

with
$$\hat{K}_i = \sum_{m=1}^n \hat{k}_m J_{im}.$$

Moreira et al.

DTDA package

<ロト <回ト < 回ト < 回ト

E

Shen Estimator

Shen (2008) showed that the solutions are the unconditional NPMLE of F and K, respectively, and both estimators can be obtained by:

$$\hat{f}_{j} = \left[\sum_{i=1}^{n} \frac{1}{\hat{K}_{j}}\right]^{-1} \frac{1}{\hat{K}_{j}}, \quad j = 1, ..., n$$
$$\hat{k}_{j} = \left[\sum_{i=1}^{n} \frac{1}{\hat{F}_{j}}\right]^{-1} \frac{1}{\hat{F}_{j}}, \quad j = 1, ..., n$$

Moreira et al.	useR! 2009	DTDA package	

Э

・ロト ・回ト ・ヨト ・ヨト

EM algorithm from Shen (2008)

- **S1.** Compute the initial estimate $\hat{F}_{(0)}$ corresponding to $\hat{f}_{(0)} = (1/n, ..., 1/n);$
- S2. Apply (4) to get the first step estimator $\hat{k}_{(1)}$ and compute the $\hat{K}_{(1)}$ pertaining to $\hat{k}_{(1)};$
- **S3.** Apply (3) to get the first step estimator $\hat{f}_{(1)}$ and its corresponding $\hat{F}_{(1)}$;
- S4. Repeat Steps S2 and S3 until convergence criterion is reached.

Introduction	Algorithms for DTD	Package description	Conclusions

DTDA-package

- efron.petrosian(X,...)
- lynden(X,...)
- shen(X,...)

Moreira et al.	useR! 2009	DTDA package	12/30

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・ 日

200

DTDA-package

- efron.petrosian(X,...)
- lynden(X,...)
- shen(X,...)
- 3 examples data sets with $X \sim \text{Unif}(0,1)$ and: Ex.1 $U \sim \text{Unif}(0,0.5)$, $V \sim \text{Unif}(0.5,1)$ Ex.2 $U \sim \text{Unif}(0,0.25)$, $V \sim \text{Unif}(0.75,1)$ Ex.3 $U \sim \text{Unif}(0,0.67)$, $V \sim \text{Unif}(0.33,1)$

efron.petrosian illustration under double truncation

EX.1-50% of truncation

loreira et al.	useR! 2009	DTDA package	14/30

<ロト <回ト < 回ト < 回ト

E

efron.petrosian illustration under double truncation

୬ ୯.୧ 15/30

문 🛌 문

efron.petrosian illustration under left truncation

EX.1

efron.petrosian(X,U,...)

Moreira et al.

표 1 표

토 🛌 🗉

590

efron.petrosian illustration under left truncation

Moreira et al. useR! 2009 DTDA package 17/30

lynden illustration under double truncation

EX.2-25% of truncation

lynden(X,U,V,...) >iter >NJ>f>FF >h>S>Sob >upperF >lowerF >upperS >lowerS

More

・ロト ・回ト ・ヨト ・ヨト

ira et al.	useR! 2009	DTDA package	18

Э

lynden illustration under double truncation

୬ ୯.୧ 19/30

E

lynden illustration under right truncation

EX.2

lynden(X,V,...)

al.	
-----	--

Э

lynden illustration under right truncation

Survival

Moreira et al.

≣⇒ æ

shen illustration under double truncation

EX.3-67% of truncation

shen(X,U,V...)>iter >f>FF >S>Sob >k> fU> fV>upperF >lowerF >upperS >lowerS

Moreira et al.

! 2009	DTDA package	
--------	--------------	--

useR

イロト イヨト イヨト イヨト

臣

shen illustration under double truncation

Summary

• The DTDA package provides different algorithms for analyzing randomly truncated data, one-sided and two-sided (i.e. doubly) truncated data being allowed.

臣

Summary

- The DTDA package provides different algorithms for analyzing randomly truncated data, one-sided and two-sided (i.e. doubly) truncated data being allowed.
- This package incorporates the functions efron.petrosian, lynden and shen, which call the iterative methods introduced by Efron and Petrosian (1999)and Shen (2008).

Summary

- The DTDA package provides different algorithms for analyzing randomly truncated data, one-sided and two-sided (i.e. doubly) truncated data being allowed.
- This package incorporates the functions efron.petrosian, lynden and shen, which call the iterative methods introduced by Efron and Petrosian (1999)and Shen (2008).
- Estimation of the lifetime and truncation times distributions is possible, together with the corresponding pointwise confidence limits based on the bootstrap.

Introduction	Algorithms for DTD	Package description	Conclusions
Summary			

- The DTDA package provides different algorithms for analyzing randomly truncated data, one-sided and two-sided (i.e. doubly) truncated data being allowed.
- This package incorporates the functions efron.petrosian, lynden and shen, which call the iterative methods introduced by Efron and Petrosian (1999)and Shen (2008).
- Estimation of the lifetime and truncation times distributions is possible, together with the corresponding pointwise confidence limits based on the bootstrap.
- Plots of cumulative distributions and survival functions are provided.

Introduction	Algorithms for DTD	Package description	Conclusions
Summary			

- The DTDA package provides different algorithms for analyzing randomly truncated data, one-sided and two-sided (i.e. doubly) truncated data.
- This package incorporates the functions efron.petrosian, lynden and shen, which call the iterative methods introduced by Efron and Petrosian (1999)and Shen (2008).
- Estimation of the lifetime and truncation times distributions is possible, together with the corresponding pointwise confidence limits based on the bootstrap.
- Plots of marginal cumulative distributions and survival functions are provided.
- There are no R packages with double truncation scheme.

ヨト・イヨト

Introduction	Algorithms for DTD	Package description	Conclusions

Acknowledgments

- Work supported by the research Grant MTM2008-03129 and MTM2008-0310 of the Spanish Ministerio de Ciencia e Innovación
- Grant PGIDIT07PXIB300191PR of the Xunta de Galicia

			_	
Moreira et al.	useR! 2009	DTDA package		29/30

イロト イロト イモト イモト ニモ

References

- Efron, B. and Petrosian, V. (1999)
 Nonparametric methods for doubly truncated data.
 Journal of the American Statistical Association, 94, 824-834.
- Lynden-Bell, D. (1971)
 A method of allowing for known observational selection in small samples applied to 3CR quasars.
 Mon. Not. R. Astr. Soc, 155, 95-118.
- Moreira, C. and de Uña Álvarez, J.(Under revision) Bootstrapping the NPMLE for doubly truncated data. Journal of Nonparametric Statistics.

Shen P-S. (2008)

Nonparametric analysis of doubly truncated data. Annals of the Institute of Statistical Mathematics, DOI 10.1007/s10463-008-0192-2.

Moreira et al.

useR! 2009