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Basic Results
General Setting

We have an estimator b of the p × 1 parameter vector β.

b is asymptotically multivariate-normal, with asymptotic
expectation β and estimated asymptotic positive-definite
covariance matrix V.

In the applications that we have in mind, β appears in a linear
predictor η = x′β, where x′ is a “design” vector of regressors.
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Basic Results
Linear Hypotheses

We address linear hypotheses of the form H1: ψ1 = L1β = 0,
where the k1× p hypothesis matrix L1 of rank k1 ≤ p contains
pre-specified constants and 0 is the k1 × 1 zero vector.

As is well known, the hypothesis H1 can be tested by the
Wald statistic

Z1 = (L1b)′(L1VL′1)
−1L1b,

which is asymptotically distributed as chi-square with k1

degrees of freedom.
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Basic Results
Nested Linear Hypotheses

Consider another hypothesis H2: ψ2 = L2β = 0, where L2

has k2 < k1 rows and is of rank k2, and 0 is the k2 × 1 zero
vector.

Hypothesis H2 is nested within the hypothesis H1 if and only
if the rows of L2 lie in the space spanned by the rows of L1.

Then the truth of H1 (which is more restrictive than H2)
implies the truth of H2, but not vice-versa.
Typically the rows of L2 will be a proper subset of the rows of
L1.

The conditional hypothesis H1|2 is that L1β = 0 | L2β = 0.
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Basic Results
Testing Nested Hypotheses: Wald Test

H1|2 can be tested by the Wald statistic

Z1|2 = (L1|2b)′(L1|2VL′1|2)
−1L1|2b,

L1|2 is the conjugate complement of the projection of the rows
of L2 into the row space of L1 with respect to the inner
product V.
The conditional Wald statistic Z1|2 is asymptotically
distributed as chi-square with k1 − k2 degrees of freedom.
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Basic Results
Testing Nested Hypotheses: F Test

In some models, such as a generalized linear model with a
dispersion parameter estimated from the data, we can
alternatively compute an F -test of H1|2 as

F1|2 =
1

k1 − k2
(L1|2b)′(L1|2VL′1|2)

−1L1|2b.

If tests for all terms of a linear model are formulated in
conformity with the principle of marginality, the conditional
F -test produces so-called “Type-II” hypothesis tests.
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Basic Results
Sketch of Justification

Let L∗ be any r × p matrix whose rows extend the row space
of L2 to the row space of L1 (i.e., r = k1 − k2),

The hypothesis

H∗: ψ∗ = L∗β = 0 |H2: ψ2 = L2β = 0

is equivalent to the hypothesis

H1: L1β = 0 |H2: L2β = 0

and independent of the particular choice of L∗.
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Basic Results
Sketch of Justification

The minimum-variance asymptotically unbiased estimator of
ψ∗ under the conditional null hypothesis is

ψ̂
C
∗ = L∗b− L∗VL′2

(
L2VL′2

)−1
L2b = L∗|2b

where
L∗|2 = L∗ − L∗VL′2

(
L2VL′2

)−1
L2

Thus the test of H1|2 is based on the statistic

Z1|2 = ψ̂
C ′
∗

(
L∗|2VL′∗|2

)−1
ψ̂

C
∗

which is asymptotically distributed as chi-square with r
degrees of freedom under H1 given H2.
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Basic Results
Geometric Interpretion
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If L∗ and L2 are 1× p , then the 2D
confidence ellipse for ψ = [ψ∗, ψ2]

′ = L1β
is based on the estimated asymptotic

variance ÂsyVar(ψ̂) = L1VL′1.

The unrestricted estimator ψ̂∗ is the
perpendicular projection of
ψ̂ =

[
ψ̂∗, ψ̂2

]′ = L1b onto the ψ∗ axis.

ψ̂C
∗ is the oblique projection of ψ̂ onto the

ψ∗ axis along the direction conjugate to
the ψ∗ axis with respect to the inner

product
(
L1VL′1

)−1
.
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Basic Results
Geometric Interpretion

The dashed ellipse is the asymptotic 2D confidence ellipse,

E2 = ψ̂ +
√

χ2
.95;2

(
L1VL′1

)1/2 U

where U is the unit-circle and χ2
.95;2 is the .95 quantile of the

chi-square distribution with two degrees of freedom.
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Basic Results
Geometric Interpretion

The solid ellipse

E1 = ψ̂ +
√

χ2
.95;1

(
L1VL′1

)1/2 U

is generated by changing the degrees of freedom to one.

one-dimensional projections of E1 are ordinary confidence
intervals for linear combinations of ψ = [ψ∗, ψ2]′.
Under H2, all projections onto the ψ∗ axis are unbiased
estimators of ψ∗ with 95% confidence intervals given by the
corresponding projection of the solid ellipse.
The projection in the direction conjugate to the ψ∗ axis — that
is, along the line through the center of the confidence ellipse
and through the points on the ellipse with horizontal tangents
— yields the confidence interval with the smallest width.
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Examples
Dummy Regression

Suppose, for example, that we are interested in a
dummy-regression model with linear predictor

η = β1 + β2x + β3d + β4xd

where x is a covariate and d is a dummy regressor, taking on
the values 0 and 1.

Then the hypotheses H2: β4 = 0 (that there is no interaction
between x and d) is nested within the hypothesis H1:
β3 = β4 = 0 (that there is neither interaction between x and
d nor a “main effect” of d).
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Examples
Dummy Regression

(a) No Interaction
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(b) Interaction
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Examples
Dummy Regression

In this case we have

L1 =
[

0 0 1 0
0 0 0 1

]
L2 = [0, 0, 0, 1]

The conditional hypothesis H1|2: β3 = β4 = 0 | β4 = 0 can be
restated as H1|2: β3 = 0 | β4 = 0 — that is, the hypothesis of
no main effect of d assuming no interaction between x and d .

Here ψ1 = [β3, β4]′, ψ2 = β4, and ψ∗ = β3.
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Example
Dummy Regression

This example also illustrates why conditional (“Type II”)
hypotheses are potentially of interest in models where some
terms are marginal to others:

The unconditional (“Type-III”) hypothesis H0: β3 = 0 pertains
to the partial effect of d above the origin (i.e., where x = 0).
If β4 6= 0, then this is not reasonably interpretable as a
hypothesis about the main effect of d , and may, indeed, be of
no interest at all (when, for example, the values of x are all far
from 0).
If β4 = 0 and the centre of the data is far from x = 0, then
the unconditional test will have low power.
The interpretability and performance of the unconditional test
can be improved by centering the x at x .
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Example
Dummy Regression with White-Huber Coefficient Covariances: Davis Data

Data on measured and reported weight from the Davis
dataset in the car package.

> library(car)

> mod.davis <- lm(repwt ~ weight*sex, data=Davis)

> summary(mod.davis)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.34116 1.87515 1.782 0.0765 .
weight 0.93314 0.03253 28.682 <2e-16 ***
sexM -1.98252 2.45028 -0.809 0.4195
weight:sexM 0.05668 0.03845 1.474 0.1422
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Example
Dummy Regression with White-Huber Coefficient Covariances: Davis Data

“Type-II” tests with White-Huber coefficient covariances:

> Anova(mod.davis, white=TRUE)

Anova Table (Type II tests)

Response: repwt
Df F Pr(>F)

weight 1 2165.7754 < 2.2e-16 ***
sex 1 15.1678 0.0001388 ***
weight:sex 1 1.8684 0.1733720
Residuals 179
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Example
Dummy Regression with White-Huber Coefficient Covariances: Davis Data

“Type-III” tests with White-Huber coefficient covariances:

> Anova(mod.davis, white=TRUE, type=3)

Anova Table (Type III tests)

Response: repwt
Df F Pr(>F)

(Intercept) 1 4.4271 0.03677 *
weight 1 1148.9590 < 2e-16 ***
sex 1 0.5196 0.47197
weight:sex 1 1.8684 0.17337
Residuals 179
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Example
Dummy Regression with White-Huber Coefficient Covariances: Davis Data

Refitting with a centered covariate and sigma-contrained
contrast for sex

> Davis$cweight <- with(Davis, weight - mean(weight))

> mod.davis.2 <- lm(repwt ~ cweight*sex, data=Davis,

+ contrasts=list(sex=contr.sum))

> summary(mod.davis.2)

(Intercept) 65.09131 0.23858 272.823 < 2e-16 ***
cweight 0.96148 0.01923 50.006 < 2e-16 ***
sex1 -0.85817 0.23858 -3.597 0.000416 ***
cweight:sex1 -0.02834 0.01923 -1.474 0.142233
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Example
Dummy Regression with White-Huber Coefficient Covariances: Davis Data

“Type-II” tests with centered model:

> Anova(mod.davis.2, white=TRUE)

Anova Table (Type II tests)

Response: repwt
Df F Pr(>F)

cweight 1 2165.7754 < 2.2e-16 ***
sex 1 15.1678 0.0001388 ***
cweight:sex 1 1.8684 0.1733720
Residuals 179
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Example
Dummy Regression with White-Huber Coefficient Covariances: Davis Data

“Type-III” tests with centered model:

> Anova(mod.davis.2, white=TRUE, type=3)

Anova Table (Type III tests)

Response: repwt
Df F Pr(>F)

(Intercept) 1 86075.1218 < 2.2e-16 ***
cweight 1 2150.3272 < 2.2e-16 ***
sex 1 14.9616 0.0001535 ***
cweight:sex 1 1.8684 0.1733720
Residuals 179
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Examples
Geometry of the Davis Regression Example
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The “Type-III” tests are given by the perpendicular shadows of
the solid ellipses on the parameter axes, while the “Type-II”
tests are given by the oblique projections producing the
narrowest shadows.

For the centered data, the “Type-II” and “Type-III’ tests are
very similar.
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Examples
Two-Way ANOVA (Briefly!)

The traditional two-way analysis-of-variance (ANOVA) model:

Yijk = µ + αj + βk + γjk + ε ijk

Yijk is the ith of njk observations in cell {Rj , Ck}
µ is the general mean of Y
the αj and βk are main-effect parameters
the γjk are interaction parameters
the εijk ∼ NID(0, σ2)

Thus µjk = E (Yijk) = µ + αj + βk + γjk .
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Examples
Two-Way ANOVA

For a 2× 3 classification:

(a) No Interaction
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Examples
Two-Way ANOVA

R uses a full-rank parametrization of the ANOVA model.

Using sigma contraints to reduce the model to full-rank (i.e.,
contr.sum in R), unconditional (i.e., “Type-III”) tests of main
effects is a test of equality of marginal means, and is
interpretable whether or not there is interaction—analogous to
centering at x in dummy regression.

The conditional (“Type-II”) tests of main effects assumes no
interaction and is more powerful under that circumstance.
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Implementation
Computation

Consider the complete QR decomposition of

L1VL′2 = QR = [Q1, Q2]
[

R1

0

]
with Q′Q = I.

Recall that hypothesis matrix L2 is nested within L1.

Let L1|2 = Q′2L1.

Then L1|2 has rank r ; L1|2VL′2 = Q′2L1VL′2 = Q′2Q1 = 0; and
the rows of L1|2 provide a basis for the conjugate complement
of the row space of L2 with respect to the inner product V.
Thus, the complete QR decomposition of L1VL′2 can be used
to generate a hypothesis matrix L1|2 from which Z1|2 can be
obtained.
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Implementation
In the car Package

The Anova function in the car package implements this
approach.

For lm objects, this produces traditional “Type-II” incremental
F -tests.
For glm objects, analogous “Type-II” Wald tests can be
computed without refitting the model, as is required for
likelihood-ratio tests.
A default method can be used in other settings, such as
linear models with sandwich coefficient covariance matrix
estimators, where alternative methods for computing “Type-II”
tests are unavailable.

Additional applications are possible, such as “Type-II” Wald
tests of fixed effects in mixed-effect models.
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