A Framework for Hypothesis Tests in Statistical Models With Linear Predictors

Georges Monette¹ John Fox²

¹York University Toronto, Ontario, Canada

²McMaster University Hamilton, Ontario, Canada

useR 2009 Rennes

York and McMaster

Image: 1 million of the second sec

Monette and Fox

Basic Results General Setting

- We have an estimator **b** of the $p \times 1$ parameter vector $\boldsymbol{\beta}$.
- **b** is asymptotically multivariate-normal, with asymptotic expectation β and estimated asymptotic positive-definite covariance matrix **V**.
- In the applications that we have in mind, β appears in a linear predictor $\eta = \mathbf{x}' \boldsymbol{\beta}$, where \mathbf{x}' is a "design" vector of regressors.

Monette and Fox

York and McMaster

Basic Results

Linear Hypotheses

- We address linear hypotheses of the form H₁: ψ₁ = L₁β = 0, where the k₁ × p hypothesis matrix L₁ of rank k₁ ≤ p contains pre-specified constants and 0 is the k₁ × 1 zero vector.
- As is well known, the hypothesis *H*₁ can be tested by the Wald statistic

$$Z_1 = (\mathsf{L}_1 \mathsf{b})' (\mathsf{L}_1 \mathsf{V} \mathsf{L}_1')^{-1} \mathsf{L}_1 \mathsf{b}$$
 ,

< < >> < <</p>

which is asymptotically distributed as chi-square with k_1 degrees of freedom.

Monette and Fox

Nested Linear Hypotheses

- Consider another hypothesis H_2 : $\psi_2 = \mathbf{L}_2 \boldsymbol{\beta} = \mathbf{0}$, where \mathbf{L}_2 has $k_2 < k_1$ rows and is of rank k_2 , and $\mathbf{0}$ is the $k_2 \times 1$ zero vector.
- Hypothesis H_2 is *nested within* the hypothesis H_1 if and only if the rows of L_2 lie in the space spanned by the rows of L_1 .
 - Then the truth of H_1 (which is more restrictive than H_2) implies the truth of H_2 , but not vice-versa.
 - Typically the rows of \boldsymbol{L}_2 will be a proper subset of the rows of $\boldsymbol{L}_1.$
- The conditional hypothesis $H_{1|2}$ is that $L_1\beta = \mathbf{0} | L_2\beta = \mathbf{0}$.

Monette and Fox

York and McMaster

Basic Results Testing Nested Hypotheses: Wald Test

• $H_{1|2}$ can be tested by the Wald statistic

$$Z_{1|2} = (\mathbf{L}_{1|2}\mathbf{b})'(\mathbf{L}_{1|2}\mathbf{V}\mathbf{L}_{1|2}')^{-1}\mathbf{L}_{1|2}\mathbf{b},$$

- $L_{1|2}$ is the conjugate complement of the projection of the rows of L_2 into the row space of L_1 with respect to the inner product V.
- The conditional Wald statistic $Z_{1|2}$ is asymptotically distributed as chi-square with $k_1 k_2$ degrees of freedom.

York and McMaster

< D > < P > < P > < P >

Monette and Fox

Testing Nested Hypotheses: F Test

• In some models, such as a generalized linear model with a dispersion parameter estimated from the data, we can alternatively compute an *F*-test of $H_{1|2}$ as

$$F_{1|2} = \frac{1}{k_1 - k_2} (\mathbf{L}_{1|2} \mathbf{b})' (\mathbf{L}_{1|2} \mathbf{V} \mathbf{L}_{1|2}')^{-1} \mathbf{L}_{1|2} \mathbf{b}.$$

 If tests for all terms of a linear model are formulated in conformity with the principle of marginality, the conditional *F*-test produces so-called "Type-II" hypothesis tests.

Monette and Fox

< 17 ▶

- Let L_∗ be any r × p matrix whose rows extend the row space of L₂ to the row space of L₁ (i.e., r = k₁ − k₂),
- The hypothesis

$$H_*: \boldsymbol{\psi}_* = \boldsymbol{\mathsf{L}}_*\boldsymbol{\beta} = \boldsymbol{\mathsf{0}} \mid H_2: \boldsymbol{\psi}_2 = \boldsymbol{\mathsf{L}}_2\boldsymbol{\beta} = \boldsymbol{\mathsf{0}}$$

is equivalent to the hypothesis

$$H_1: \mathbf{L}_1 \boldsymbol{\beta} = \mathbf{0} \mid H_2: \mathbf{L}_2 \boldsymbol{\beta} = \mathbf{0}$$

and independent of the particular choice of L_* .

Monette and Fox

A Framework for Hypothesis Tests in Statistical Models With Linear Predictors

York and McMaster

• The minimum-variance asymptotically unbiased estimator of $\pmb{\psi}_*$ under the conditional null hypothesis is

$$\widehat{\boldsymbol{\psi}}_{*}^{\hspace{0.5mm}\mathsf{C}} = \boldsymbol{\mathsf{L}}_{*}\boldsymbol{\mathsf{b}} - \boldsymbol{\mathsf{L}}_{*}\boldsymbol{\mathsf{V}}\boldsymbol{\mathsf{L}}_{2}^{\prime}\left(\boldsymbol{\mathsf{L}}_{2}\boldsymbol{\mathsf{V}}\boldsymbol{\mathsf{L}}_{2}^{\prime}
ight)^{-1}\boldsymbol{\mathsf{L}}_{2}\boldsymbol{\mathsf{b}} = \boldsymbol{\mathsf{L}}_{*|2}\boldsymbol{\mathsf{b}}$$

where

$$\mathbf{L}_{*|2} = \mathbf{L}_{*} - \mathbf{L}_{*}\mathbf{V}\mathbf{L}_{2}^{\prime}\left(\mathbf{L}_{2}\mathbf{V}\mathbf{L}_{2}^{\prime}\right)^{-1}\mathbf{L}_{2}$$

• Thus the test of $H_{1|2}$ is based on the statistic

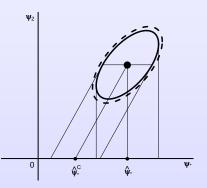
$$Z_{1|2} = \widehat{\boldsymbol{\psi}}_{*}^{C\prime} \left(\mathbf{L}_{*|2} \mathbf{V} \mathbf{L}_{*|2}^{\prime} \right)^{-1} \widehat{\boldsymbol{\psi}}_{*}^{C}$$

which is asymptotically distributed as chi-square with r degrees of freedom under H_1 given H_2 .

Monette and Fox

York and McMaster

Geometric Interpretion



- If \mathbf{L}_* and \mathbf{L}_2 are $1 \times p$, then the 2D confidence ellipse for $\boldsymbol{\psi} = [\psi_*, \psi_2]' = \mathbf{L}_1 \boldsymbol{\beta}$ is based on the estimated asymptotic variance $\widehat{\operatorname{AsyVar}}(\widehat{\boldsymbol{\psi}}) = \mathbf{L}_1 \mathbf{V} \mathbf{L}'_1$.
- The unrestricted estimator $\widehat{\psi}_*$ is the perpendicular projection of $\widehat{\psi} = [\widehat{\psi}_*, \widehat{\psi}_2]' = \mathbf{L}_1 \mathbf{b}$ onto the ψ_* axis.
- $\widehat{\psi}_*^C$ is the oblique projection of $\widehat{\psi}$ onto the ψ_* axis along the direction conjugate to the ψ_* axis with respect to the inner product $(\mathbf{L}_1 \mathbf{V} \mathbf{L}'_1)^{-1}$.

Monette and Fox

Basic Results Geometric Interpretion

• The dashed ellipse is the asymptotic 2D confidence ellipse,

$$\mathcal{E}_2 = \widehat{\psi} + \sqrt{\chi^2_{.95;2}} \left(\mathsf{L}_1 \mathsf{V} \mathsf{L}_1'
ight)^{1/2} \mathcal{U}$$

where \mathcal{U} is the unit-circle and $\chi^2_{.95;2}$ is the .95 quantile of the chi-square distribution with two degrees of freedom.

Monette and Fox

Geometric Interpretion

• The solid ellipse

$$\mathcal{E}_{1}=\widehat{oldsymbol{\psi}}+\sqrt{\chi^{2}_{.95;1}}\left(oldsymbol{\mathsf{L}}_{1}oldsymbol{\mathsf{V}}oldsymbol{\mathsf{L}}_{1}'
ight)^{1/2}\mathcal{U}$$

is generated by changing the degrees of freedom to one.

- one-dimensional projections of *E*₁ are ordinary confidence intervals for linear combinations of *ψ* = [ψ_{*}, ψ₂]['].
- Under H_2 , all projections onto the ψ_* axis are unbiased estimators of ψ_* with 95% confidence intervals given by the corresponding projection of the solid ellipse.
- The projection in the direction conjugate to the ψ_* axis that is, along the line through the center of the confidence ellipse and through the points on the ellipse with horizontal tangents — yields the confidence interval with the smallest width.

Monette and Fox

York and McMaster

Examples Dummy Regression

• Suppose, for example, that we are interested in a dummy-regression model with linear predictor

$$\eta = \beta_1 + \beta_2 x + \beta_3 d + \beta_4 x d$$

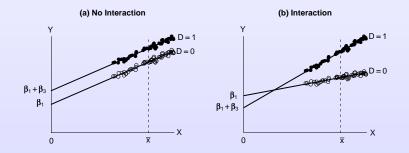
where x is a covariate and d is a dummy regressor, taking on the values 0 and 1.

Then the hypotheses H₂: β₄ = 0 (that there is no interaction between x and d) is nested within the hypothesis H₁:
 β₃ = β₄ = 0 (that there is neither interaction between x and d nor a "main effect" of d).

Monette and Fox

< D > < P > < P > < P >

Examples Dummy Regression



York and McMaster

Monette and Fox

Examples Dummy Regression

In this case we have

$$\mathbf{L}_{1} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{L}_{2} = [0, 0, 0, 1]$$

The conditional hypothesis H_{1|2}: β₃ = β₄ = 0 | β₄ = 0 can be restated as H_{1|2}: β₃ = 0 | β₄ = 0 — that is, the hypothesis of no main effect of *d* assuming no interaction between *x* and *d*.

• Here
$$\psi_1 = [\beta_3, \beta_4]'$$
, $\psi_2 = \beta_4$, and $\psi^* = \beta_3$.

Monette and Fox

York and McMaster

< D > < P > < E >

Example Dummy Regression

- This example also illustrates why conditional ("Type II") hypotheses are potentially of interest in models where some terms are marginal to others:
 - The unconditional ("Type-III") hypothesis H_0 : $\beta_3 = 0$ pertains to the partial effect of *d* above the origin (i.e., where x = 0).
 - If β₄ ≠ 0, then this is not reasonably interpretable as a hypothesis about the main effect of d, and may, indeed, be of no interest at all (when, for example, the values of x are all far from 0).
 - If β₄ = 0 and the centre of the data is far from x = 0, then the unconditional test will have low power.
 - The interpretability and performance of the unconditional test can be improved by centering the x at \overline{x} .

イロト イヨト イヨト イ

Dummy Regression with White-Huber Coefficient Covariances: Davis Data

- Data on measured and reported weight from the Davis dataset in the **car** package.
- > library(car)
- > mod.davis <- lm(repwt ~ weight*sex, data=Davis)</pre>
- > summary(mod.davis)

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	3.34116	1.87515	1.782	0.0765 .	
weight	0.93314	0.03253	28.682	<2e-16 ***	:
sexM	-1.98252	2.45028	-0.809	0.4195	
weight:sexM	0.05668	0.03845	1.474	0.1422	

Monette and Fox

A Framework for Hypothesis Tests in Statistical Models With Linear Predictors

York and McMaster

< D > < P > < E >

Dummy Regression with White-Huber Coefficient Covariances: Davis Data

 ${\ensuremath{\bullet}}$ "Type-II" tests with White-Huber coefficient covariances:

```
> Anova(mod.davis, white=TRUE)
```

Anova Table (Type II tests)

```
Response: repwt

Df F Pr(>F)

weight 1 2165.7754 < 2.2e-16 ***

sex 1 15.1678 0.0001388 ***

weight:sex 1 1.8684 0.1733720

Residuals 179
```

Monette and Fox

York and McMaster

< D > < P > < P > < P >

Dummy Regression with White-Huber Coefficient Covariances: Davis Data

 \bullet "Type-III" tests with White-Huber coefficient covariances:

```
> Anova(mod.davis, white=TRUE, type=3)
```

Anova Table (Type III tests)

```
Response: repwt
                       F Pr(>F)
             Df
              1
(Intercept)
                  4.4271 0.03677 *
weight
              1 1148.9590 < 2e-16 ***
              1
                   0.5196 0.47197
sex
             1
weight:sex
                   1.8684 0.17337
Residuals
           179
```

Monette and Fox

A Framework for Hypothesis Tests in Statistical Models With Linear Predictors

York and McMaster

< D > < P > < P > < P >

Dummy Regression with White-Huber Coefficient Covariances: Davis Data

- Refitting with a centered covariate and sigma-contrained contrast for sex
- > Davis\$cweight <- with(Davis, weight mean(weight))</pre>
- > mod.davis.2 <- lm(repwt ~ cweight*sex, data=Davis,</pre>

+ contrasts=list(sex=contr.sum))

> summary(mod.davis.2)

(Intercept)	65.09131	0.23858	272.823	< 2e-16	***
cweight	0.96148	0.01923	50.006	< 2e-16	***
sex1	-0.85817	0.23858	-3.597	0.000416	***
cweight:sex1	-0.02834	0.01923	-1.474	0.142233	

Monette and Fox

A Framework for Hypothesis Tests in Statistical Models With Linear Predictors

York and McMaster

Image: A math a math

Dummy Regression with White-Huber Coefficient Covariances: Davis Data

• "Type-II" tests with centered model:

> Anova(mod.davis.2, white=TRUE)

Anova Table (Type II tests)

```
Response: repwt

Df F Pr(>F)

cweight 1 2165.7754 < 2.2e-16 ***

sex 1 15.1678 0.0001388 ***

cweight:sex 1 1.8684 0.1733720

Residuals 179
```

Monette and Fox

York and McMaster

< D > < P > < P > < P >

Dummy Regression with White-Huber Coefficient Covariances: Davis Data

```
• "Type-III" tests with centered model:
```

```
> Anova(mod.davis.2, white=TRUE, type=3)
```

Anova Table (Type III tests)

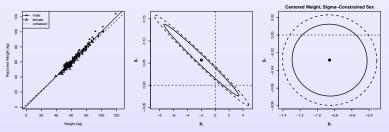
```
Response: repwt
                        F Pr(>F)
            Df
             1 86075.1218 < 2.2e-16 ***
(Intercept)
cweight
             1
                2150.3272 < 2.2e-16 ***
             1
                  14.9616 0.0001535 ***
sex
             1
cweight:sex
                   1.8684 0.1733720
Residuals
           179
```

Monette and Fox

York and McMaster

< D > < P > < P > < P >

Examples Geometry of the Davis Regression Example



- The "Type-III" tests are given by the perpendicular shadows of the solid ellipses on the parameter axes, while the "Type-II" tests are given by the oblique projections producing the narrowest shadows.
- For the centered data, the "Type-II" and "Type-III' tests are very similar.

Examples Two-Way ANOVA (Briefly!)

• The traditional two-way analysis-of-variance (ANOVA) model:

$$Y_{ijk} = \mu + \alpha_j + \beta_k + \gamma_{jk} + \varepsilon_{ijk}$$

- Y_{ijk} is the *i*th of n_{jk} observations in cell $\{R_j, C_k\}$
- μ is the general mean of Y
- the α_j and β_k are main-effect parameters
- the γ_{ik} are interaction parameters
- the $\varepsilon_{ijk} \sim \text{NID}(0, \sigma^2)$
- Thus $\mu_{jk} = E(Y_{ijk}) = \mu + \alpha_j + \beta_k + \gamma_{jk}$.

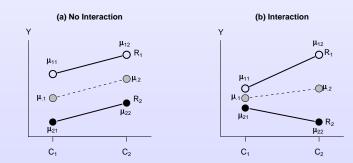
Monette and Fox

York and McMaster

< D > < P > < P > < P >

Examples Two-Way ANOVA

• For a 2×3 classification:



York and McMaster

Monette and Fox

Examples Two-Way ANOVA

- R uses a full-rank parametrization of the ANOVA model.
- Using sigma contraints to reduce the model to full-rank (i.e., contr.sum in R), unconditional (i.e., "Type-III") tests of main effects is a test of equality of marginal means, and is interpretable whether or not there is interaction—analogous to centering at x̄ in dummy regression.
- The conditional ("Type-II") tests of main effects assumes no interaction and is more powerful under that circumstance.

< 口 > < 同 >

Implementation

Computation

• Consider the complete QR decomposition of

$$\mathbf{L}_{1}\mathbf{V}\mathbf{L}_{2}^{\prime}=\mathbf{Q}\mathbf{R}=\left[\mathbf{Q}_{1},\mathbf{Q}_{2}\right]\left[\begin{array}{c}\mathbf{R}_{1}\\\mathbf{0}\end{array}\right]$$

with $\mathbf{Q}'\mathbf{Q} = \mathbf{I}$.

• Recall that hypothesis matrix L_2 is nested within L_1 .

• Let
$$L_{1|2} = Q'_2 L_1$$
.

- Then $\mathbf{L}_{1|2}$ has rank r; $\mathbf{L}_{1|2}\mathbf{V}\mathbf{L}'_2 = \mathbf{Q}'_2\mathbf{L}_1\mathbf{V}\mathbf{L}'_2 = \mathbf{Q}'_2\mathbf{Q}_1 = \mathbf{0}$; and the rows of $\mathbf{L}_{1|2}$ provide a basis for the conjugate complement of the row space of \mathbf{L}_2 with respect to the inner product \mathbf{V} .
- Thus, the complete QR decomposition of L₁VL₂ can be used to generate a hypothesis matrix L_{1|2} from which Z_{1|2} can be obtained.

Monette and Fox

Implementation

In the car Package

- The Anova function in the **car** package implements this approach.
 - For 1m objects, this produces traditional "Type-II" incremental *F*-tests.
 - For glm objects, analogous "Type-II" Wald tests can be computed without refitting the model, as is required for likelihood-ratio tests.
 - A default method can be used in other settings, such as linear models with sandwich coefficient covariance matrix estimators, where alternative methods for computing "Type-II" tests are unavailable.
- Additional applications are possible, such as "Type-II" Wald tests of fixed effects in mixed-effect models.