Shape Analysis in \mathbf{R}
 GM library in the light of recent methodological developments

Stanislav Katina

stanislav.katina@gmail.com

Department of Applied Mathematics and Statistics, Comenius University, Bratislava, Slovakia
Neurospin, Institut d'Imagerie BioMédicale Commissariat á l'Energie Atomique, Gif sur Yvette, France
$5^{\text {th }} \mathrm{R}$ useR Conference, Rennes, France, July 8-10, 2009

Outline

(1) Introduction

- Notation and problems
(2) Cubic splines
- Example 1 - shape data
- NCS for bivariate data

3 TPS for shape data

- TPS for shape data
- TPS relaxation along curves

4 Acknowledgement

Outline

(1) Introduction

- Notation and problems
(2) Cubic splines
- Example 1 - shape data
- NCS for bivariate data

3 TPS for shape data

- TPS for shape data
- TPS relaxation along curvesAcknowledgement

Ian Dryden's R-package - shapes

- Statistical shape analysis

Ian Dryden's R-package - shapes

- Statistical shape analysis
- Version: 1.1-3

Generalized Procrustes Analysis (GPA), Relative Warp
Analysis (RWA), statistical inference

Ian Dryden's R-package - shapes

- Statistical shape analysis
- Version: 1.1-3
- http://www.maths.nott.ac.uk/ ild/shapes

Ian Dryden's R-package - shapes

- Statistical shape analysis
- Version: 1.1-3
- http://www.maths.nott.ac.uk/ ild/shapes
- Generalized Procrustes Analysis (GPA), Relative Warp Analysis (RWA), statistical inference

Ian Dryden's R-package - shapes

- Statistical shape analysis
- Version: 1.1-3
- http://www.maths.nott.ac.uk/ ild/shapes
- Generalized Procrustes Analysis (GPA), Relative Warp Analysis (RWA), statistical inference
- Thin-plate spline grids, 3D visualization via libraries scatterplot 3 d and rgl

New R-package - GMM

- Statistical shape analysis

New R-package - GMM

- Statistical shape analysis
- upcoming in autumn 2009

New R-package - GMM

- Statistical shape analysis
- upcoming in autumn 2009
-

http://www.defm.fmph.uniba.sk/ katina/katina.htm
sliding of semilandmarks on open and closed curves and surfaces, missing value estimation, affine and non-affine component. unwarbina. Multivariate Multicle Linear Regression Model of shape on size, Relative Warp Analysis, shape-space PCA, form-space PCA size-adiusted PCA. 2-block PIS (two shane blocks, one shape block and one block of external variables), analysis of asymmetry, statistical inference

New R-package - GMM

- Statistical shape analysis
- upcoming in autumn 2009
-

http://www.defm.fmph.uniba.sk/ katina/katina.htm

- sliding of semilandmarks on open and closed curves and surfaces, missing value estimation, affine and non-affine component, unwarping, Multivariate Multiple Linear Regression Model of shape on size, Relative Warp Analysis, shape-space PCA, form-space PCA, size-adjusted PCA, 2-block PLS (two shape blocks, one shape block and one block of external variables), analysis of asymmetry, statistical inference
\square ienna)

New R-package - GMM

- Statistical shape analysis
- upcoming in autumn 2009
-

http://www.defm.fmph.uniba.sk/ katina/katina.htm

- sliding of semilandmarks on open and closed curves and surfaces, missing value estimation, affine and non-affine component, unwarping, Multivariate Multiple Linear Regression Model of shape on size, Relative Warp Analysis, shape-space PCA, form-space PCA, size-adjusted PCA, 2-block PLS (two shape blocks, one shape block and one block of external variables), analysis of asymmetry, statistical inference
- GMM toolbox (Hull/York Medical School, University of Vienna)

Notation and problems

Introduction

- $x_{j} \in \mathbb{R}, k$-vector \mathbf{x}

Introduction

- $x_{j} \in \mathbb{R}, k$-vector \mathbf{x}
- $y_{j} \in \mathbb{R}, k$-vector \mathbf{y}

Notation and problems

Introduction

- $x_{j} \in \mathbb{R}, k$-vector \mathbf{x}
- $y_{j} \in \mathbb{R}, k$-vector \mathbf{y}
- $\mathbf{x}_{j}=\left(x_{j}^{(1)}, x_{j}^{(2)}\right)^{T} \in \mathbb{R}^{2}, k \times 2$ matrix \mathbf{X}

Introduction

- $x_{j} \in \mathbb{R}, k$-vector \mathbf{x}
- $y_{j} \in \mathbb{R}, k$-vector \mathbf{y}
- $\mathbf{x}_{j}=\left(x_{j}^{(1)}, x_{j}^{(2)}\right)^{T} \in \mathbb{R}^{2}, k \times 2$ matrix \mathbf{X}
- $\mathbf{y}_{j}=\left(y_{j}^{(1)}, y_{j}^{(2)}\right)^{T} \in \mathbb{R}^{2}, k \times 2$ matrix \mathbf{Y}

Notation and problems

Introduction

- $x_{j} \in \mathbb{R}, k$-vector \mathbf{x}
- $y_{j} \in \mathbb{R}, k$-vector \mathbf{y}
- $\mathbf{x}_{j}=\left(x_{j}^{(1)}, x_{j}^{(2)}\right)^{T} \in \mathbb{R}^{2}, k \times 2$ matrix \mathbf{X}
- $\mathbf{y}_{j}=\left(y_{j}^{(1)}, y_{j}^{(2)}\right)^{T} \in \mathbb{R}^{2}, k \times 2$ matrix \mathbf{Y}
- $j=1,2, \ldots k$

Introduction

- natural cubic splines

Introduction

- natural cubic splines
- thin-plate splines

Notation and problems

Introduction

- $f: \mathbb{R} \rightarrow \mathbb{R}$

Notation and problems

Introduction

- $f: \mathbb{R} \rightarrow \mathbb{R}$
- $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

Notation and problems

Introduction

- $y_{j}=f\left(x_{j}\right)+\varepsilon_{j}$

Notation and problems

Introduction

- $y_{j}=f\left(x_{j}\right)+\varepsilon_{j}$
- $\mathbf{y}_{j}=\mathbf{f}\left(\mathbf{x}_{j}\right)+\varepsilon_{j}$

Outline

(2) Cubic splines

- Example 1 - shape data
- NCS for bivariate data
(3) TPS for shape data
- TPS for shape data
- TPS relaxation along curves

4 Acknowledgement

Data

- Coquerelle M, Bookstein FL, Braga J, Halazonetis DJ, Katina S, Weber GW, 2009. Visualizing mandibular shape changes of modern humans and chimpanzees (Pan troglodytes) from fetal life to the complete eruption of the deciduous dentition. The Anatomical Record (accepted)

Data

- Coquerelle M, Bookstein FL, Braga J, Halazonetis DJ, Katina S, Weber GW, 2009. Visualizing mandibular shape changes of modern humans and chimpanzees (Pan troglodytes) from fetal life to the complete eruption of the deciduous dentition. The Anatomical Record (accepted)
- computed tomographies (CT) of 151 modern humans (78 females and 73 males) of mixed ethnicity, living in France, from birth to adulthood. [Pellegrin Hospital (Bordeaux), Necker Hospital (Paris) and Clinique Pasteur (Toulouse)]

Data

- each mandibular surface was reconstructed from the CT-scans via the software package Amira (Mercury Computer Systems, Chelmsford, MA)
semilandmarks was created to measure the mandibular
surface and was warped onto each mandible

Data

- each mandibular surface was reconstructed from the CT-scans via the software package Amira (Mercury Computer Systems, Chelmsford, MA)
- open-source software Edgewarp3D (Bookstein \& Green 2002), a 3D-template of 415 landmarks and semilandmarks was created to measure the mandibular surface and was warped onto each mandible

Example 1 - shape data

Data

EVAN

Interpolation model

- Consider a NCS given by

$$
f(x)=c+a x+\sum_{j=1}^{k} w_{j} \phi_{j}(x), j=1,2, \ldots k,
$$

where

constraints $\sum_{j=1}^{k} w_{j}=\sum_{j=1}^{k} w_{j} x_{j}=0, f^{\prime \prime}$ and $f^{\prime \prime \prime}$ are bothzero outside the interval $\left[x_{1}, x_{i}\right]$
function $\phi(x)=\frac{1}{12}|x|^{3}$ is a continuous function known as a
radial (nodal) basis function (Jackson 1989)

Interpolation model

- Consider a NCS given by

$$
f(x)=c+a x+\sum_{j=1}^{k} w_{j} \phi_{j}(x), j=1,2, \ldots k,
$$

where

- x_{j} are the knots, $\phi_{j}(x)=\phi\left(x-x_{j}\right)=\frac{1}{12}\left|x-x_{j}\right|^{3}$ with the constraints $\sum_{j=1}^{k} w_{j}=\sum_{j=1}^{k} w_{j} x_{j}=0, f^{\prime \prime}$ and $f^{\prime \prime \prime}$ are both zero outside the interval $\left[x_{1}, x_{k}\right]$
radial (nodal) basis function (Jackson 1989)

Interpolation model

- Consider a NCS given by

$$
f(x)=c+a x+\sum_{j=1}^{k} w_{j} \phi_{j}(x), j=1,2, \ldots k,
$$

where

- x_{j} are the knots, $\phi_{j}(x)=\phi\left(x-x_{j}\right)=\frac{1}{12}\left|x-x_{j}\right|^{3}$ with the constraints $\sum_{j=1}^{k} w_{j}=\sum_{j=1}^{k} w_{j} x_{j}=0, f^{\prime \prime}$ and $f^{\prime \prime \prime}$ are both zero outside the interval $\left[x_{1}, x_{k}\right]$
- function $\phi(x)=\frac{1}{12}|x|^{3}$ is a continuous function known as a radial (nodal) basis function (Jackson 1989)

Interpolation model

$$
\begin{aligned}
& \text { - Let }(\mathbf{S})_{i j}=\phi_{j}\left(x_{i}\right)=\phi\left(x_{i}-x_{j}\right)=\frac{1}{12}\left|x_{i}-x_{j}\right|^{3} \\
& \quad \mathbf{w}=\left(w_{1}, \ldots w_{k}\right)^{T}
\end{aligned}
$$

Interpolation model

- Let $(\mathbf{S})_{i j}=\phi_{j}\left(x_{i}\right)=\phi\left(x_{i}-x_{j}\right)=\frac{1}{12}\left|x_{i}-x_{j}\right|^{3}$,
$\mathbf{w}=\left(w_{1}, \ldots w_{k}\right)^{T}$
- constraint $\left(\mathbf{1}_{k}, \mathbf{x}\right)^{T} \mathbf{w}=\mathbf{0}$

Interpolation model

- Let $(\mathbf{S})_{i j}=\phi_{j}\left(x_{i}\right)=\phi\left(x_{i}-x_{j}\right)=\frac{1}{12}\left|x_{i}-x_{j}\right|^{3}$,
$\mathbf{w}=\left(w_{1}, \ldots w_{k}\right)^{T}$
- constraint $\left(\mathbf{1}_{k}, \mathbf{x}\right)^{T} \mathbf{w}=\mathbf{0}$
- NCS interpolation to the data $\left(x_{j}, y_{j}\right)$

$$
\left(\begin{array}{c}
\mathbf{y} \tag{1}\\
0 \\
0
\end{array}\right)=\left(\begin{array}{ccc}
\mathbf{S} & \mathbf{1}_{k} & \mathbf{x} \\
\mathbf{1}_{k}^{T} & 0 & 0 \\
\mathbf{x}^{T} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\mathbf{w} \\
c \\
a
\end{array}\right),
$$

NCS for bivariate data

Interpolation model

- Let $(\mathbf{S})_{i j}=\phi_{j}\left(x_{i}\right)=\phi\left(x_{i}-x_{j}\right)=\frac{1}{12}\left|x_{i}-x_{j}\right|^{3}$,
$\mathbf{w}=\left(w_{1}, \ldots w_{k}\right)^{T}$
- constraint $\left(\mathbf{1}_{k}, \mathbf{x}\right)^{T} \mathbf{w}=\mathbf{0}$
- NCS interpolation to the data $\left(x_{j}, y_{j}\right)$

$$
\left(\begin{array}{c}
\mathbf{y} \tag{1}\\
0 \\
0
\end{array}\right)=\left(\begin{array}{ccc}
\mathbf{S} & \mathbf{1}_{k} & \mathbf{x} \\
\mathbf{1}_{k}^{T} & 0 & 0 \\
\mathbf{x}^{T} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\mathbf{w} \\
c \\
a
\end{array}\right)
$$

- where $\mathbf{x}_{k \times 1}=\left(x_{1}, \ldots x_{k}\right)^{T}$ and $\mathbf{y}_{k \times 1}=\left(y_{1}, y_{2}, \ldots y_{k}\right)^{T}$

Interpolation model

- Let matrix \mathbf{L} be defined as

$$
\mathbf{L}=\left(\begin{array}{ccc}
\mathbf{S} & \mathbf{1}_{k} & \mathbf{x} \\
\mathbf{1}_{k}^{T} & 0 & 0 \\
\mathbf{x}^{T} & 0 & 0
\end{array}\right)
$$

Interpolation model

- Let matrix \mathbf{L} be defined as

$$
\mathbf{L}=\left(\begin{array}{ccc}
\mathbf{S} & \mathbf{1}_{k} & \mathbf{x} \\
\mathbf{1}_{k}^{T} & 0 & 0 \\
\mathbf{x}^{T} & 0 & 0
\end{array}\right)
$$

- inverse of \mathbf{L} is equal to

$$
\mathbf{L}^{-1}=\left(\begin{array}{ll}
\mathbf{L}_{k \times k}^{11} & \mathbf{L}_{k \times 2}^{12} \\
\mathbf{L}_{2 \times k}^{21} & \mathbf{L}_{2 \times 2}^{22}
\end{array}\right)
$$

Interpolation model

- bending energy matrix $-k \times k$ matrix $\mathbf{B}_{e}=\mathbf{L}^{11}$

Interpolation model

- bending energy matrix $-k \times k$ matrix $\mathbf{B}_{e}=\mathbf{L}^{11}$
- constrains of this matrix $\mathbf{1}_{k}^{T} \mathbf{B}_{e}=\mathbf{0}, \mathbf{x}^{T} \mathbf{B}_{e}=\mathbf{0}$, so the rank of the \mathbf{B}_{e} is $k-2$

Interpolation model

- bending energy matrix $-k \times k$ matrix $\mathbf{B}_{e}=\mathbf{L}^{11}$
- constrains of this matrix $\mathbf{1}_{k}^{T} \mathbf{B}_{e}=\mathbf{0}, \mathbf{x}^{\top} \mathbf{B}_{e}=\mathbf{0}$, so the rank of the \mathbf{B}_{e} is $k-2$
- $\mathbf{w}=\mathbf{B}_{e} \mathbf{y}$

Interpolation model

- bending energy matrix $-k \times k$ matrix $\mathbf{B}_{e}=\mathbf{L}^{11}$
- constrains of this matrix $\mathbf{1}_{k}^{T} \mathbf{B}_{e}=\mathbf{0}, \mathbf{x}^{T} \mathbf{B}_{e}=\mathbf{0}$, so the rank of the \mathbf{B}_{e} is $k-2$
- $\mathbf{w}=\mathbf{B}_{e} \mathbf{y}$
- $(c, a)^{T}=\mathbf{L}^{21} \mathbf{y}$

Interpolation model

- bending energy matrix $-k \times k$ matrix $\mathbf{B}_{e}=\mathbf{L}^{11}$
- constrains of this matrix $\mathbf{1}_{k}^{T} \mathbf{B}_{e}=\mathbf{0}, \mathbf{x}^{\top} \mathbf{B}_{e}=\mathbf{0}$, so the rank of the \mathbf{B}_{e} is $k-2$
- $\mathbf{w}=\mathbf{B}_{e} \mathbf{y}$
- $(c, a)^{T}=\mathbf{L}^{21} \mathbf{y}$
- $J(f)=\mathbf{w}^{\top} \mathbf{S w}=\mathbf{y}^{\top} \mathbf{B}_{e} \mathbf{y}$

Data pre-processing

- SVD of $\mathbf{X}_{c}=\mathbf{\Gamma} \boldsymbol{\Lambda} \boldsymbol{\Gamma}^{T}=\sum_{j=1}^{2} \lambda_{j} \gamma_{j} \gamma_{j}^{\top}, \mathbf{X}_{c}=\mathbf{X}-\mathbf{1}_{k} \overline{\mathbf{X}}^{\top}$ (Mardia et al. 2000) [principal component analysis]

Data pre-processing

- SVD of $\mathbf{X}_{c}=\mathbf{\Gamma} \boldsymbol{\Lambda} \boldsymbol{\Gamma}^{T}=\sum_{j=1}^{2} \lambda_{j} \gamma_{j} \gamma_{j}^{\top}, \mathbf{X}_{c}=\mathbf{X}-\mathbf{1}_{k} \overline{\mathbf{X}}^{\top}$ (Mardia et al. 2000) [principal component analysis]
- the 1 th principal component of \mathbf{X} is equal to $\mathbf{z}_{1}=\mathbf{X}_{c} \gamma_{1}$, where γ_{1} is the 1 th column of $\boldsymbol{\Gamma}$, and $z_{1 j}, j=1,2, \ldots k$ are principal component scores of j th landmark ($z_{1 j}$ is j th element of k-vector \mathbf{z}_{1})

Data pre-processing

- SVD of $\mathbf{X}_{c}=\boldsymbol{\Gamma} \boldsymbol{\Lambda} \boldsymbol{\Gamma}^{T}=\sum_{j=1}^{2} \lambda_{j} \gamma_{j} \gamma_{j}^{\top}, \mathbf{X}_{c}=\mathbf{X}-\mathbf{1}_{k} \overline{\mathbf{x}}^{\top}$ (Mardia et al. 2000) [principal component analysis]
- the 1 th principal component of \mathbf{X} is equal to $\mathbf{z}_{1}=\mathbf{X}_{c} \gamma_{1}$, where γ_{1} is the 1 th column of $\boldsymbol{\Gamma}$, and $z_{1 j}, j=1,2, \ldots k$ are principal component scores of j th landmark ($z_{1 j}$ is j th element of k-vector \mathbf{z}_{1})
- re-ordering of the rows of \mathbf{X} is done based on the ranks of $z_{1 j}$ in \mathbf{z}_{1}

Data pre-processing

- SVD of $\mathbf{D}_{d c}$ (Gower 1966) [principal coordinate analysis]
doubly centered (both row- and column-centered)

Data pre-processing

- SVD of $\mathbf{D}_{d c}$ (Gower 1966) [principal coordinate analysis]
- \mathbf{D}_{1} is $k \times k$ matrix of squared interlandmark Euklidean distances, $\mathbf{D}_{2}=-\frac{1}{2} \mathbf{D}_{1}$ and

$$
\mathbf{D}_{d c}=\mathbf{D}_{2}-\frac{1}{k} \mathbf{1}_{k} \mathbf{1}_{k}^{T} \mathbf{D}_{2}-\frac{1}{k} \mathbf{D}_{2} \mathbf{1}_{k} \mathbf{1}_{k}^{T}+\frac{1}{k^{2}} \mathbf{1}_{k} \mathbf{1}_{k}^{T} \mathbf{D}_{2} \mathbf{1}_{k} \mathbf{1}_{k}^{T}
$$

- doubly centered (both row- and column-centered)

Data pre-processing

- SVD of $\mathbf{D}_{d c}$ (Gower 1966) [principal coordinate analysis]
- \mathbf{D}_{1} is $k \times k$ matrix of squared interlandmark Euklidean distances, $\mathbf{D}_{2}=-\frac{1}{2} \mathbf{D}_{1}$ and

$$
\mathbf{D}_{d c}=\mathbf{D}_{2}-\frac{1}{k} \mathbf{1}_{k} \mathbf{1}_{k}^{T} \mathbf{D}_{2}-\frac{1}{k} \mathbf{D}_{2} \mathbf{1}_{k} \mathbf{1}_{k}^{T}+\frac{1}{k^{2}} \mathbf{1}_{k} \mathbf{1}_{k}^{T} \mathbf{D}_{2} \mathbf{1}_{k} \mathbf{1}_{k}^{T}
$$

- doubly centered (both row- and column-centered)

Modified interpolation model

- chordal distance $d_{c h}^{(j)}$ of the rows $j-1$ and j of (\mathbf{x}, \mathbf{y}), $j=2,3, \ldots k$

Modified interpolation model

- chordal distance $d_{c h}^{(j)}$ of the rows $j-1$ and j of (\mathbf{x}, \mathbf{y}), $j=2,3, \ldots k$
- cumulative chordal distance $d_{c c h}^{(j)}=\sum_{i=2}^{j} d_{c h}^{(i)}$, $j=2,3, \ldots k$

Modified interpolation model

- chordal distance $d_{c h}^{(j)}$ of the rows $j-1$ and j of (\mathbf{x}, \mathbf{y}), $j=2,3, \ldots k$
- cumulative chordal distance $d_{c c h}^{(j)}=\sum_{i=2}^{j} d_{c h}^{(i)}$,
$j=2,3, \ldots k$
- $d_{c c h}^{(j)}=d_{j}, j=1,2, \ldots k, \mathbf{d}_{c c h}=\left(d_{1}, d_{2}, \ldots d_{k}\right)^{T}, d_{1}=0$

Modified interpolation model

- chordal distance $d_{c h}^{(j)}$ of the rows $j-1$ and j of (\mathbf{x}, \mathbf{y}), $j=2,3, \ldots k$
- cumulative chordal distance $d_{c c h}^{(j)}=\sum_{i=2}^{j} d_{c h}^{(i)}$,
$j=2,3, \ldots k$
- $d_{c c h}^{(j)}=d_{j}, j=1,2, \ldots k, \mathbf{d}_{c c h}=\left(d_{1}, d_{2}, \ldots d_{k}\right)^{T}, d_{1}=0$
- NCS of \mathbf{x} on $\mathbf{d}_{c c h}$

Modified interpolation model

- chordal distance $d_{c h}^{(j)}$ of the rows $j-1$ and j of (\mathbf{x}, \mathbf{y}), $j=2,3, \ldots k$
- cumulative chordal distance $d_{c c h}^{(j)}=\sum_{i=2}^{j} d_{c h}^{(i)}$,
$j=2,3, \ldots k$
- $d_{c c h}^{(j)}=d_{j}, j=1,2, \ldots k, \mathbf{d}_{c c h}=\left(d_{1}, d_{2}, \ldots d_{k}\right)^{T}, d_{1}=0$
- NCS of \mathbf{x} on $\mathbf{d}_{c c h}$
- NCS of \mathbf{y} on $\mathbf{d}_{c c h}$

Data

For the purpose of re-sampling

- 21 digitized semilandmarks on the symphisis $\mathbf{X}_{P, 2}=\left(\mathbf{x}_{P, 21}, \mathbf{x}_{P, 22}\right), \mathbf{d}_{c c h, 2}$ (subject No.2)

Data

For the purpose of re-sampling

- 21 digitized semilandmarks on the symphisis $\mathbf{X}_{P, 2}=\left(\mathbf{x}_{P, 21}, \mathbf{x}_{P, 22}\right), \mathbf{d}_{c c h, 2}$ (subject No.2)
- NCS of $\mathbf{y}=\mathbf{x}_{P, 21}$ on $\mathbf{x}=\mathbf{d}_{c c h, 2}$

Data

For the purpose of re-sampling

- 21 digitized semilandmarks on the symphisis $\mathbf{X}_{P, 2}=\left(\mathbf{x}_{P, 21}, \mathbf{x}_{P, 22}\right), \mathbf{d}_{c c h, 2}$ (subject No.2)
- NCS of $\mathbf{y}=\mathbf{x}_{P, 21}$ on $\mathbf{x}=\mathbf{d}_{c c h, 2}$
- NCS of $\mathbf{y}=\mathbf{x}_{P, 22}$ on $\mathbf{x}=\mathbf{d}_{c c h, 2}$

NCS for bivariate data

Data

Outline

(4) Introduction

- Notation and problems
(2) Cubic splines
- Example 1 - shape data
- NCS for bivariate data

3 TPS for shape data

- TPS for shape data
- TPS relaxation along curves
(4) Acknowledgement

Penalized LRM

- Penalized linear regression model (LRM)

$$
\mathbf{y}_{j}=\mathbf{f}\left(\mathbf{x}_{j}\right)+\varepsilon_{j}, j=1,2, \ldots k,
$$

penalized sum of squares

Penalized LRM

- Penalized linear regression model (LRM)

$$
\mathbf{y}_{j}=\mathbf{f}\left(\mathbf{x}_{j}\right)+\varepsilon_{j}, j=1,2, \ldots k,
$$

- where $\mathbf{x}_{j}, \mathbf{y}_{j} \in \mathbb{R}^{2}, \mathbf{f}=\left(f_{1}, f_{2}\right) \in \mathcal{D}^{(2)}$ (the class of twice-differentiable, absolutely continuous functions f with square integrable second derivative (Wahba 1990)), $f_{m}: \mathbb{R}^{2} \rightarrow \mathbb{R}, m=1,2$
penalized sum of souares

Penalized LRM

- Penalized linear regression model (LRM)

$$
\mathbf{y}_{j}=\mathbf{f}\left(\mathbf{x}_{j}\right)+\varepsilon_{j}, j=1,2, \ldots k,
$$

- where $\mathbf{x}_{j}, \mathbf{y}_{j} \in \mathbb{R}^{2}, \mathbf{f}=\left(f_{1}, f_{2}\right) \in \mathcal{D}^{(2)}$ (the class of twice-differentiable, absolutely continuous functions f with square integrable second derivative (Wahba 1990)), $f_{m}: \mathbb{R}^{2} \rightarrow \mathbb{R}, m=1,2$
- penalized sum of squares

$$
S_{p e n}(\mathbf{f})=\sum_{j=1}^{k}\left\|\mathbf{y}_{j}-\mathbf{f}\left(\mathbf{x}_{j}\right)\right\|^{2}+\lambda J(\mathbf{f})
$$

TPS for shape data

Penalized LRM

- penalty

$$
J(\mathbf{f})=\sum_{m=1}^{2} \iint_{\mathbb{R}^{2}}\left[\sum_{i, j}\left(\frac{\partial^{2} f_{m}}{\partial x^{(i)} \partial x^{(j)}}\right)^{2}\right] d x^{(1)} d x^{(2)}
$$

penalized least square estimator f is defined to be the minimizer of the functional $S_{\text {nen }}(\mathbf{f})$ over the class $\mathcal{D}^{(2)}$ of $\mathbf{f s}$

Penalized LRM

- penalty

$$
J(\mathbf{f})=\sum_{m=1}^{2} \iint_{\mathbb{R}^{2}}\left[\sum_{i, j}\left(\frac{\partial^{2} f_{m}}{\partial x^{(i)} \partial x^{(j)}}\right)^{2}\right] d x^{(1)} d x^{(2)}
$$

- penalized least square estimator \tilde{f} is defined to be the minimizer of the functional $S_{\text {pen }}(\mathbf{f})$ over the class $\mathcal{D}^{(2)}$ of fs , where

$$
\tilde{\mathbf{f}}=\arg \min _{\mathbf{f} \in \mathcal{D}^{(2)}} S_{\text {pen }}(\mathbf{f})
$$

Interpolation model

- Consider a TPS given by

$$
\begin{gathered}
f_{m}(\mathbf{x})=c_{m}+\mathbf{a}_{m}^{T} \mathbf{x}+\sum_{j=1}^{k} w_{j m} \phi_{j}(\mathbf{x}) \\
\mathbf{f}(\mathbf{x})=\mathbf{c}+\mathbf{A}^{T} \mathbf{x}+\mathbf{W}^{T} \mathbf{s}(\mathbf{x})
\end{gathered}
$$

where
\qquad

Interpolation model

- Consider a TPS given by

$$
\begin{gathered}
f_{m}(\mathbf{x})=c_{m}+\mathbf{a}_{m}^{T} \mathbf{x}+\sum_{j=1}^{k} w_{j m} \phi_{j}(\mathbf{x}) \\
\mathbf{f}(\mathbf{x})=\mathbf{c}+\mathbf{A}^{T} \mathbf{x}+\mathbf{W}^{T} \mathbf{s}(\mathbf{x}),
\end{gathered}
$$

where
$-\mathbf{c}=\left(c_{1}, c_{2}\right)^{\top}, \mathbf{A}=\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right), \mathbf{w}_{m}=\left(w_{1 m}, w_{2 m}, \ldots w_{k m}\right)^{\top}$,
$m=1,2, \mathbf{W}=\left(\mathbf{w}_{1}, \mathbf{w}_{2}\right), \mathbf{s}(\mathbf{x})_{k \times 1}=\left[\phi_{1}(\mathbf{x}), \ldots \phi_{k}(\mathbf{x})\right]^{\top}$
function
known as a radial (nodal) basis function (Jackson 1989)

Interpolation model

- Consider a TPS given by

$$
\begin{gathered}
f_{m}(\mathbf{x})=c_{m}+\mathbf{a}_{m}^{T} \mathbf{x}+\sum_{j=1}^{k} w_{j m} \phi_{j}(\mathbf{x}) \\
\mathbf{f}(\mathbf{x})=\mathbf{c}+\mathbf{A}^{T} \mathbf{x}+\mathbf{W}^{T} \mathbf{s}(\mathbf{x})
\end{gathered}
$$

where

- $\mathbf{c}=\left(c_{1}, c_{2}\right)^{T}, \mathbf{A}=\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right), \mathbf{w}_{m}=\left(w_{1 m}, w_{2 m}, \ldots w_{k m}\right)^{T}$, $m=1,2, \mathbf{W}=\left(\mathbf{w}_{1}, \mathbf{w}_{2}\right), \mathbf{s}(\mathbf{x})_{k \times 1}=\left[\phi_{1}(\mathbf{x}), \ldots \phi_{k}(\mathbf{x})\right]^{\top}$
- function $\phi(\mathbf{x})=\|\mathbf{x}\|_{2}^{2} \log \left(\|\mathbf{x}\|_{2}^{2}\right)$ is a continuous function known as a radial (nodal) basis function (Jackson 1989)

Interpolation model

- $(\mathbf{S})_{i j}=\phi_{j}\left(\mathbf{x}_{i}\right)=\phi\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right), i, j=1,2, \ldots k, \forall\|\mathbf{x}\|_{2}>0$

TPS interpolation to the data $\left(\mathbf{x}_{j}, \mathbf{y}_{j}\right)$

TPS for shape data

Interpolation model

- $(\mathbf{S})_{i j}=\phi_{j}\left(\mathbf{x}_{i}\right)=\phi\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right), i, j=1,2, \ldots k, \forall\|\mathbf{x}\|_{2}>0$
- constraint $\left(\mathbf{1}_{k}: \mathbf{X}\right)^{T} \mathbf{W}=\mathbf{0}$

TPS interpolation to the data $\left(\mathrm{x}_{j}, \mathrm{y}_{\mathrm{j}}\right)$

TPS for shape data

Interpolation model

- $(\mathbf{S})_{i j}=\phi_{j}\left(\mathbf{x}_{i}\right)=\phi\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right), i, j=1,2, \ldots k, \forall\|\mathbf{x}\|_{2}>0$
- constraint $\left(\mathbf{1}_{k}: \mathbf{X}\right)^{T} \mathbf{W}=\mathbf{0}$
- TPS interpolation to the data $\left(\mathbf{x}_{j}, \mathbf{y}_{j}\right)$

$$
\left(\begin{array}{l}
\mathbf{Y} \tag{2}\\
\mathbf{0} \\
\mathbf{0}
\end{array}\right)=\left(\begin{array}{ccc}
\mathbf{S} & \mathbf{1}_{k} & \mathbf{X} \\
\mathbf{1}_{K}^{T} & 0 & \mathbf{0} \\
\mathbf{X}^{T} & \mathbf{0} & \mathbf{0}
\end{array}\right)\left(\begin{array}{c}
\mathbf{W} \\
\mathbf{c}^{T} \\
\mathbf{A}
\end{array}\right),
$$

TPS for shape data

Interpolation model

- $(\mathbf{S})_{i j}=\phi_{j}\left(\mathbf{x}_{i}\right)=\phi\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right), i, j=1,2, \ldots k, \forall\|\mathbf{x}\|_{2}>0$
- constraint $\left(\mathbf{1}_{k}: \mathbf{X}\right)^{T} \mathbf{W}=\mathbf{0}$
- TPS interpolation to the data $\left(\mathbf{x}_{j}, \mathbf{y}_{j}\right)$

$$
\left(\begin{array}{c}
\mathbf{Y} \tag{2}\\
\mathbf{0} \\
\mathbf{0}
\end{array}\right)=\left(\begin{array}{ccc}
\mathbf{S} & \mathbf{1}_{k} & \mathbf{X} \\
\mathbf{1}_{k}^{T} & 0 & \mathbf{0} \\
\mathbf{X}^{T} & \mathbf{0} & \mathbf{0}
\end{array}\right)\left(\begin{array}{c}
\mathbf{W} \\
\mathbf{c}^{T} \\
\mathbf{A}
\end{array}\right),
$$

- where $\mathbf{Y}_{k \times 2}=\left(\mathbf{y}_{1}, \ldots \mathbf{y}_{k}\right)^{T}$ and $\mathbf{X}_{k \times 2}=\left(\mathbf{x}_{1}, \ldots \mathbf{x}_{k}\right)^{T}$

Interpolation model

- Let matrix \mathbf{L} be defined as

$$
\mathbf{L}=\left(\begin{array}{ccc}
\mathbf{S} & \mathbf{1}_{k} & \mathbf{X} \\
\mathbf{1}_{k}^{T} & 0 & \mathbf{0} \\
\mathbf{X}^{T} & \mathbf{0} & \mathbf{0}
\end{array}\right)
$$

TPS for shape data

Interpolation model

- Let matrix L be defined as

$$
\mathbf{L}=\left(\begin{array}{ccc}
\mathbf{S} & \mathbf{1}_{k} & \mathbf{X} \\
\mathbf{1}_{k}^{T} & 0 & \mathbf{0} \\
\mathbf{X}^{T} & \mathbf{0} & \mathbf{0}
\end{array}\right)
$$

- inverse of L is equal to

$$
\mathbf{L}^{-1}=\left(\begin{array}{ll}
\mathbf{L}_{k \times k}^{11} & \mathbf{L}_{k \times 3}^{12} \\
\mathbf{L}_{3 \times k}^{21} & \mathbf{L}_{3 \times 3}^{22}
\end{array}\right)
$$

Interpolation model

- bending energy matrix $-k \times k$ matrix $\mathbf{B}_{e}=\mathbf{L}^{11}$

Interpolation model

- bending energy matrix $-k \times k$ matrix $\mathbf{B}_{e}=\mathbf{L}^{11}$
- constrains of this matrix $\mathbf{1}_{k}^{T} \mathbf{B}_{e}=\mathbf{0}, \mathbf{X}^{T} \mathbf{B}_{e}=\mathbf{0}$, so the rank of the \mathbf{B}_{e} is $k-2$

Interpolation model

- bending energy matrix $-k \times k$ matrix $\mathbf{B}_{e}=\mathbf{L}^{11}$
- constrains of this matrix $\mathbf{1}_{k}^{\top} \mathbf{B}_{e}=\mathbf{0}, \mathbf{X}^{\top} \mathbf{B}_{e}=\mathbf{0}$, so the rank of the \mathbf{B}_{e} is $k-2$
- $\mathbf{W}=\mathbf{B}_{e} \mathbf{Y}$

Interpolation model

- bending energy matrix $-k \times k$ matrix $\mathbf{B}_{e}=\mathbf{L}^{11}$
- constrains of this matrix $\mathbf{1}_{k}^{\top} \mathbf{B}_{e}=\mathbf{0}, \mathbf{X}^{\top} \mathbf{B}_{e}=\mathbf{0}$, so the rank of the \mathbf{B}_{e} is $k-2$
- $\mathbf{W}=\mathbf{B}_{e} \mathbf{Y}$
- $\left(c, \mathbf{A}^{T}\right)^{T}=\mathbf{L}^{21} \mathbf{Y}$

TPS for shape data

Interpolation model

- bending energy matrix $-k \times k$ matrix $\mathbf{B}_{e}=\mathbf{L}^{11}$
- constrains of this matrix $\mathbf{1}_{k}^{\top} \mathbf{B}_{e}=\mathbf{0}, \mathbf{X}^{\top} \mathbf{B}_{e}=\mathbf{0}$, so the rank of the \mathbf{B}_{e} is $k-2$
- $\mathbf{W}=\mathbf{B}_{e} \mathbf{Y}$
- $\left(c, \mathbf{A}^{T}\right)^{T}=\mathbf{L}^{21} \mathbf{Y}$
- $J(\mathbf{f})=\operatorname{tr}\left(\mathbf{W}^{\top} \mathbf{S} \mathbf{W}\right)=\operatorname{tr}\left(\mathbf{Y}^{\top} \mathbf{B}_{e} \mathbf{Y}\right)$

TPS relaxation along curves

Data

EVAN

Data

For the purpose of relaxation

- 21 digitized semilandmarks on the symphisis from subject No. 2

No.1, seeking the configuration \mathbf{Y}_{r}

Data

For the purpose of relaxation

- 21 digitized semilandmarks on the symphisis from subject No. 2
- its Procrustes shape coordinates $\mathbf{Y}=\mathbf{X}_{P, 2}$ were relaxed onto Procrustes shape coordinates $\mathbf{X}=\mathbf{X}_{P, 1}$ of subject No.1, seeking the configuration \mathbf{Y}_{r}

Data

EVAN

TPS relaxation along curves

- Let $\mathbf{Y}_{k \times 2}=\left(\mathbf{y}_{1}, \ldots \mathbf{y}_{k}\right)^{T}$ be configuration matrix with the rows $\mathbf{y}_{j}=\left(y_{j}^{(1)}, y_{j}^{(2)}\right)^{T}$
tangent directions u

TPS relaxation along curves

TPS relaxation along curves

- Let $\mathbf{Y}_{k \times 2}=\left(\mathbf{y}_{1}, \ldots \mathbf{y}_{k}\right)^{T}$ be configuration matrix with the rows $\mathbf{y}_{j}=\left(y_{j}^{(1)}, y_{j}^{(2)}\right)^{T}$
- $\mathbf{y}_{j}^{(r)}$ is free to slid away from their old position \mathbf{y}_{j} along the tangent directions $\mathbf{u}_{j}=\left(u_{j}^{(1)}, u_{j}^{(2)}\right)^{T}$ with $\|\mathbf{u}\|_{2}=1$

TPS relaxation along curves

TPS relaxation along curves

- Let $\mathbf{Y}_{k \times 2}=\left(\mathbf{y}_{1}, \ldots \mathbf{y}_{k}\right)^{T}$ be configuration matrix with the rows $\mathbf{y}_{j}=\left(y_{j}^{(1)}, y_{j}^{(2)}\right)^{T}$
- $\mathbf{y}_{j}^{(r)}$ is free to slid away from their old position \mathbf{y}_{j} along the tangent directions $\mathbf{u}_{j}=\left(u_{j}^{(1)}, u_{j}^{(2)}\right)^{T}$ with $\|\mathbf{u}\|_{2}=1$
- new position $\mathbf{y}_{j}^{(r)}=\mathbf{y}_{j}+t_{j} \mathbf{u}_{j}$
tangent directions u
\qquad
\qquad

TPS relaxation along curves

TPS relaxation along curves

- Let $\mathbf{Y}_{k \times 2}=\left(\mathbf{y}_{1}, \ldots \mathbf{y}_{k}\right)^{T}$ be configuration matrix with the rows $\mathbf{y}_{j}=\left(y_{j}^{(1)}, y_{j}^{(2)}\right)^{T}$
- $\mathbf{y}_{j}^{(r)}$ is free to slid away from their old position \mathbf{y}_{j} along the tangent directions $\mathbf{u}_{j}=\left(u_{j}^{(1)}, u_{j}^{(2)}\right)^{T}$ with $\|\mathbf{u}\|_{2}=1$
- new position $\mathbf{y}_{j}^{(r)}=\mathbf{y}_{j}+t_{j} \mathbf{u}_{j}$
- tangent directions $\mathbf{u}_{j}=\frac{\mathbf{y}_{j+1}-\mathbf{y}_{j-1}}{\left\|\mathbf{y}_{j+1}-\mathbf{y}_{j-1}\right\|_{2}}$
\qquad

TPS relaxation along curves

- Let $\mathbf{Y}_{k \times 2}=\left(\mathbf{y}_{1}, \ldots \mathbf{y}_{k}\right)^{T}$ be configuration matrix with the rows $\mathbf{y}_{j}=\left(y_{j}^{(1)}, y_{j}^{(2)}\right)^{T}$
- $\mathbf{y}_{j}^{(r)}$ is free to slid away from their old position \mathbf{y}_{j} along the tangent directions $\mathbf{u}_{j}=\left(u_{j}^{(1)}, u_{j}^{(2)}\right)^{T}$ with $\|\mathbf{u}\|_{2}=1$
- new position $\mathbf{y}_{j}^{(r)}=\mathbf{y}_{j}+t_{j} \mathbf{u}_{j}$
- tangent directions $\mathbf{u}_{j}=\frac{\mathbf{y}_{j+1}-\mathbf{y}_{j-1}}{\left\|\mathbf{y}_{j+1}-\mathbf{y}_{j-1}\right\|_{2}}$
- \mathbf{U} is a matrix of $2 k$ rows and k columns in which the (j, j) th entry is $u_{j}^{(1)}$ and $(k+j, j)$ th entry is $u_{j}^{(2)}$, otherwise zeros

TPS relaxation along curves

- $\mathbf{y}_{r}=\operatorname{Vec}\left(\mathbf{Y}_{r}\right), \mathbf{B}=\operatorname{diag}\left(\mathbf{B}_{e}, \mathbf{B}_{e}\right), \mathbf{B}_{e}$ depends only on some configuration \mathbf{X}

TPS relaxation along curves

- $\mathbf{y}_{r}=\operatorname{Vec}\left(\mathbf{Y}_{r}\right), \mathbf{B}=\operatorname{diag}\left(\mathbf{B}_{e}, \mathbf{B}_{e}\right), \mathbf{B}_{e}$ depends only on some configuration \mathbf{X}
- $\mathbf{y}_{r}=\mathbf{y}+\mathbf{U t}$
setting the gradient of this expression to zero
straightforwardly generates the solution (Bookste in 1997)

TPS relaxation along curves

- $\mathbf{y}_{r}=\operatorname{Vec}\left(\mathbf{Y}_{r}\right), \mathbf{B}=\operatorname{diag}\left(\mathbf{B}_{e}, \mathbf{B}_{e}\right), \mathbf{B}_{e}$ depends only on some configuration \mathbf{X}
- $\mathbf{y}_{r}=\mathbf{y}+\mathbf{U t}$
- the task is now to minimize the form

$$
\mathbf{y}_{r}^{\top} \mathbf{B} \mathbf{y}_{r}=(\mathbf{y}+\mathbf{U t})^{\top} \mathbf{B}(\mathbf{y}+\mathbf{U t})
$$

setting the gradient of this expression to zero
straightforwardly generates the solution (Bookstein 1997)

TPS relaxation along curves

- $\mathbf{y}_{r}=\operatorname{Vec}\left(\mathbf{Y}_{r}\right), \mathbf{B}=\operatorname{diag}\left(\mathbf{B}_{e}, \mathbf{B}_{e}\right), \mathbf{B}_{e}$ depends only on some configuration \mathbf{X}
- $\mathbf{y}_{r}=\mathbf{y}+\mathbf{U t}$
- the task is now to minimize the form

$$
\mathbf{y}_{r}^{\top} \mathbf{B} \mathbf{y}_{r}=(\mathbf{y}+\mathbf{U t})^{T} \mathbf{B}(\mathbf{y}+\mathbf{U t})
$$

- setting the gradient of this expression to zero straightforwardly generates the solution (Bookstein 1997)

$$
\mathbf{t}=-\left(\mathbf{U}^{\top} \mathbf{B} \mathbf{U}\right)^{-1} \mathbf{U}^{\top} \mathbf{B} \mathbf{y}
$$

TPS relaxation along curves

Data

TPS relaxation along curves

Data

EVAN

TPS relaxation along curves

- Let the curve defined by \mathbf{y}_{j} be interpolated by cubic spline or B-spline \tilde{f} (De Boor (1972) or Eilers \& Marx (1996)), $\mathbf{y}_{j}=\left(y_{j}^{(1)}, y_{j}^{(2)}\right)^{T} \in \tilde{f}, j=1,2, \ldots k$

TPS relaxation along curves

- Let the curve defined by \mathbf{y}_{j} be interpolated by cubic spline or B-spline \tilde{f} (De Boor (1972) or Eilers \& Marx (1996)), $\mathbf{y}_{j}=\left(y_{j}^{(1)}, y_{j}^{(2)}\right)^{T} \in \tilde{f}, j=1,2, \ldots k$
- re-sampled points $\mathbf{y}_{i}=\left(y_{i}^{(1)}, y_{i}^{(2)}\right)^{T} \in \tilde{f}, i=1,2, \ldots M$ $(M=500)$ and $\mathbb{M}=\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots \mathbf{y}_{M}\right\}$

[^0]
TPS relaxation along curves

- Let the curve defined by \mathbf{y}_{j} be interpolated by cubic spline or B-spline \tilde{f} (De Boor (1972) or Eilers \& Marx (1996)), $\mathbf{y}_{j}=\left(y_{j}^{(1)}, y_{j}^{(2)}\right)^{T} \in \tilde{f}, j=1,2, \ldots k$
- re-sampled points $\mathbf{y}_{i}=\left(y_{i}^{(1)}, y_{i}^{(2)}\right)^{T} \in \tilde{f}, i=1,2, \ldots M$ ($M=500$) and $\mathbb{M}=\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots \mathbf{y}_{M}\right\}$
- suppose that $\mathbf{y}_{j}^{(s)}=\left(y_{s j}^{(1)}, y_{s j}^{(2)}\right)^{T} \in \tilde{f}$ (the rows of \mathbf{Y}_{s}) are free to slid away from their old position \mathbf{y}_{j} along the curve \tilde{f}

TPS relaxation along curves

TPS relaxation along curves

- $J\left(\mathbf{y}_{s}\right)=\mathbf{y}_{s}^{\top} \mathbf{B} \mathbf{y}_{s}$, has to be minimized and \mathbf{y}_{r} is obtained as a minimizer of $J\left(\mathbf{y}_{s}\right)$ given by

$$
\begin{equation*}
\mathbf{y}_{r}=\arg \min _{\mathbf{y}_{s}} J\left(\mathbf{y}_{s}\right) \tag{3}
\end{equation*}
$$

TPS relaxation along curves

- $J\left(\mathbf{y}_{s}\right)=\mathbf{y}_{s}^{\top} \mathbf{B} \mathbf{y}_{s}$, has to be minimized and \mathbf{y}_{r} is obtained as a minimizer of $J\left(\mathbf{y}_{s}\right)$ given by

$$
\begin{equation*}
\mathbf{y}_{r}=\arg \min _{\mathbf{y}_{s}} J\left(\mathbf{y}_{s}\right) \tag{3}
\end{equation*}
$$

- the minimization starts with substitution of \mathbf{y}_{1} by $\mathbf{y}_{i} \in \mathbb{M}, \ldots$ and ends with substitution of \mathbf{y}_{k} by $\mathbf{y}_{i} \in \mathbb{M}$, where $\mathbf{y}_{j}, j=1,2, \ldots k$, are the rows of \mathbf{Y} and $i=1,2, \ldots M$:

$$
\begin{equation*}
\mathbf{y}_{j}^{(r)}=\left(\arg \min _{y_{s}} J\left(\mathbf{y}_{s}\right)\right)_{j, k+j}, \tag{4}
\end{equation*}
$$

where $(j, k+j)$ th entry of \mathbf{y}_{s} is substituted by $\mathbf{y}_{i}^{(s)} \in \mathbb{M}$ for $j=1,2, \ldots k ; i=1,2, \ldots M, \mathbf{y}_{r}=\operatorname{Vec}\left(\mathbf{Y}_{r}\right)$ and $\mathbf{y}_{j}^{(r)}$ are the rows of \mathbf{Y}_{r}

TPS relaxation along curves

Data

EVAN

TPS relaxation along curves

Data

position on the curve landmark 15 resampled 500 times

TPS relaxation along curves

Results of form-space PCA

PC1 minus

PC2 up

TPS relaxation along curves

Results of form-space PCA

EVAN

Outline

(1) Introduction

- Notation and problems
(2) Cubic splines
- Example 1 - shape data
- NCS for bivariate data
(3) TPS for shape data
- TPS for shape data
- TPS relaxation along curves

4 Acknowledgement

Acknowledgement

- Supported by MRTN-CT-2005-019564 (EVAN) to Gerhard Weber, 1/3023/06 (VEGA) to František Štulajter, 1/0077/09 (VEGA) to Andrej Pázman

Coquerelle
and University of Washington, Seattle, US

Acknowledgement

- Supported by MRTN-CT-2005-019564 (EVAN) to Gerhard Weber, 1/3023/06 (VEGA) to František Štulajter, 1/0077/09 (VEGA) to Andrej Pázman
- For data acquisition and pre-processing I thank Michael Coquerelle
\qquad
\qquad

Acknowledgement

- Supported by MRTN-CT-2005-019564 (EVAN) to Gerhard Weber, 1/3023/06 (VEGA) to František Štulajter, 1/0077/09 (VEGA) to Andrej Pázman
- For data acquisition and pre-processing I thank Michael Coquerelle
- Fred L Bookstein - University of Vienna, Vienna, Austria and University of Washington, Seattle, US

Acknowledgement

- Supported by MRTN-CT-2005-019564 (EVAN) to Gerhard Weber, 1/3023/06 (VEGA) to František Štulajter, 1/0077/09 (VEGA) to Andrej Pázman
- For data acquisition and pre-processing I thank Michael Coquerelle
- Fred L Bookstein - University of Vienna, Vienna, Austria and University of Washington, Seattle, US
- Jean-François Mangin - Neurospin, Institut d'Imagerie BioMédicale Commissariat á l'Energie Atomique, Gif sur Yvette, France

Acknowledgement

- Supported by MRTN-CT-2005-019564 (EVAN) to Gerhard Weber, 1/3023/06 (VEGA) to František Štulajter, 1/0077/09 (VEGA) to Andrej Pázman
- For data acquisition and pre-processing I thank Michael Coquerelle
- Fred L Bookstein - University of Vienna, Vienna, Austria and University of Washington, Seattle, US
- Jean-François Mangin - Neurospin, Institut d'Imagerie BioMédicale Commissariat á l'Energie Atomique, Gif sur Yvette, France
- Paul O'Higgins - Hull/York Medical School, University of York, York, UK

[^0]: free to slid away from their old position \mathbf{y}_{j} along the curve f

