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Consider the AR(1) process. It is a discrete-time random process, defined as

Xt = θXt−1 + ǫt, X0 = x0, ǫt : i.i.d. random variables (noise)



Time Series vs SDEs

Diffusions

Exact likelihood

Pseudo-likelihood

Simulated likelihood
method

Hermite expansion

2 / 17

Consider the AR(1) process. It is a discrete-time random process, defined as

Xt = θXt−1 + ǫt, X0 = x0, ǫt : i.i.d. random variables (noise)

Its continuous-time counter part (the Ornstein-Uhlenbeck process), written in

differential form, looks like

dXt = −θXtdt + dWt, X0 = x0, Wt : the Wiener process (noise)



Time Series vs SDEs

Diffusions

Exact likelihood

Pseudo-likelihood

Simulated likelihood
method

Hermite expansion

2 / 17

Consider the AR(1) process. It is a discrete-time random process, defined as

Xt = θXt−1 + ǫt, X0 = x0, ǫt : i.i.d. random variables (noise)

Its continuous-time counter part (the Ornstein-Uhlenbeck process), written in

differential form, looks like

dXt = −θXtdt + dWt, X0 = x0, Wt : the Wiener process (noise)

A stochastic differential equation models a dynamical system with feedback by

adding continuous time shocks

dXt = b(Xt)dt + σ(Xt)dWt
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In continuous time models: time between Xt and Xt+∆t matters ! The length

of ∆t is crucial as well.
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In time-series models: nothing happens (probabilistically) between Xt and
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In continuous time models: time between Xt and Xt+∆t matters ! The length

of ∆t is crucial as well.

In time-series models: nothing happens (probabilistically) between Xt and

Xt−1

Why this matters? An example: according to McCrorie & Chambers (2006, J. of

Econ.) and others, “spurious Granger causality [tested with VAR models] is

only a consequence of the intervals in which economic data are generated

being finer than the econometrician’s sampling interval.”

Conclusions: assume a continuous time model (SDE). Discretize that, build a

VAR from the discretized SDE and the spurious Granger causality vanishes!
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In continuous time models: time between Xt and Xt+∆t matters ! The length

of ∆t is crucial as well.

In time-series models: nothing happens (probabilistically) between Xt and

Xt−1

Why this matters? An example: according to McCrorie & Chambers (2006, J. of

Econ.) and others, “spurious Granger causality [tested with VAR models] is

only a consequence of the intervals in which economic data are generated

being finer than the econometrician’s sampling interval.”

Conclusions: assume a continuous time model (SDE). Discretize that, build a

VAR from the discretized SDE and the spurious Granger causality vanishes!

Rephrasing: why using a binomial distribution if your underlying model is a

Gaussian?
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� gBm : dXt = µXtdt + σXtdWt

� CIR : dXt = (θ1 + θ2Xt)dt + θ3

√
XtdWt

� CKLS : dXt = (θ1 + θ2Xt)dt + θ3X
θ4

t dWt

� nonlinear mean reversion (Aı̈t-Sahalia)

dXt = (α−1X
−1
t + α0 + α1Xt + α2X

2
t )dt + β1X

ρ
t dWt

� double Well potential (bimodal behaviour, highly nonlinear)

dXt = (Xt − X3
t )dt + dWt

� Jacobi diffusion (political polarization):

dXt = −θ
(

Xt − 1
2

)

dt +
√

θXt(1 − Xt)dWt

� radial Ornstein-Uhlenbeck : dXt = (θX−1
t − Xt)dt + dWt

� hyperbolic diffusion : dXt = σ2

2

[

β − γ Xt√
δ2+(Xt−µ)2

]

dt + σdWt
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From the statistical point of view, we are interested in the parametric family of

diffusion process solutions of the SDE

dXt = b(Xt, θ)dt + σ(Xt, θ)dWt, X0 = x0, t ∈ [0, T ]

θ = (α, β) ∈ Θα × Θβ = Θ, where Θα ⊂ Rp and Θβ ⊂ Rq .

Observations always come in discrete time form at some times ti = i∆n,

i = 0, 1, 2, ..., n, where ∆n is the length of the steps. We denote the

observations by Xn := {Xi = Xti}0≤i≤n.
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From the statistical point of view, we are interested in the parametric family of

diffusion process solutions of the SDE

dXt = b(Xt, θ)dt + σ(Xt, θ)dWt, X0 = x0, t ∈ [0, T ]

θ = (α, β) ∈ Θα × Θβ = Θ, where Θα ⊂ Rp and Θβ ⊂ Rq .

Observations always come in discrete time form at some times ti = i∆n,

i = 0, 1, 2, ..., n, where ∆n is the length of the steps. We denote the

observations by Xn := {Xi = Xti}0≤i≤n.

Different sampling schemes, different statistical procedures:

1. Large sample asymptotics: ∆ fixed, T = n∆ → ∞ as n → ∞

2. High frequency: T = n∆n fixed, ∆n → 0 as n → ∞

3. Rapidly increasing design: T = n∆ → ∞, ∆n → 0 as n → ∞ under

the additional condition n∆k
n → 0 for k > 1
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By Markov property of diffusion processes, the likelihood has this form

Ln(θ) =
n

∏

i=1

pθ (∆, Xi|Xi−1)pθ(X0)

Problem: the transition density pθ (∆, Xi|Xi−1) is often not available! Only

for OU, CIR and gBm
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By Markov property of diffusion processes, the likelihood has this form

Ln(θ) =
n

∏

i=1

pθ (∆, Xi|Xi−1)pθ(X0)

Problem: the transition density pθ (∆, Xi|Xi−1) is often not available! Only

for OU, CIR and gBm

Solutions:

� discretization of the SDE (Euler, Milstein, Ozaki, etc)

� simulation method

� hermite polynomial expansion

� partial differential equations

� other approximations of the transition density
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By Euler discretization of the SDE : dXt = b(Xt, θ)dt + σ(Xt, θ)dWt

Xt+∆t − Xt = b(Xt, θ)∆t + σ(Xt, θ)(Wt+∆t − Wt),

we get an approximate transition density which is Gaussian. This is widely seen in applied

contexts. But is this approximation good or not? In general no!

For example, for gBm, the true transition density is a log-normal and the Euler schemes provides

only a Gaussian approximation!

It is possible to prove that estimators are not even consistent for non negligible ∆.
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Consider OU model

dXt = (θ1 − θ2Xt)dt + θ3dWt, X0 = x0

Both true and Euler approximation are Gaussian respectively with mean and

variance

m(∆, x) = xe−θ2∆ +
θ1

θ2

(

1 − e−θ2∆
)

, v(∆, x) =
θ2
3

(

1 − e−2θ2∆
)

2θ2
,

and (Euler)

mEuler(∆, x) = x(1 − θ2∆) + θ1∆ , vEuler(∆, x) = θ2
3∆ ,

Only under high-frequency setting, i.e. ∆ → 0, the approximation is

acceptable.
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Let pθ(∆, y|x) be the true transition density of Xt+∆ at point y given

Xt = x. Consider a δ << ∆, for example δ = ∆/N for N large enough,

and then use the Chapman-Kolmogorov equation as follows:

pθ(∆, y|x) =

∫

pθ(δ, y|z)pθ(∆ − δ, z|x)dz = Ez{pθ(δ, y|z)|∆− δ} ,

It means that pθ(∆, y|x) is seen as the expected value over all possible

transitions of the process from time t + (∆ − δ) to t + ∆, taking into account

that the process was in x at time t.

So we need simulations!



What about N? We need many simulations
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Example: approximation for the CIR model
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Example: approximation for the CIR model
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We need many simulations (N ) for each time points (Xti , Xti+∆). But not all simulation

schemes are stable for all models
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Aı̈t-Sahalia process dXt = (5 − 11Xt + 6X2
t − X3

t )dt + dWt, X0 = 5
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True likelihood (continuous line), Euler approximation (dashed line), Aı̈t-Sahalia

approximation (dotted line). Where is the dotted line? Coincides with the

continuous line! Model dXt = βXtdt + dWt
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no need to have ∆ small, but (was) very difficult to implement!
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The sde package implements Aı̈t-Sahalia method. It also implements the following methods

� local Gaussian (dcEuler), Elerian (dcElerian), Ozaki (dcOzaki) and Shoji-Ozaki

(dcShoji) approximations

� Simulated Likelihood Method (dcSim), Kessler’s (dcKessler) and Aı̈t-Sahalia

(HPloglik) approximations

all of them can be passed to the mle function in R or used to build appropriate likelihood

functions.
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The sde package also implements many simulation schemes, including: Euler, Milstein,

Milstein2, Elerian, Ozaki, Ozaki-Shoji, Exact Simulation Scheme, Simulation from conditional

distribution, Predictor-Correction scheme, etc via the unique sde.sim function

sde.sim(t0 = 0, T = 1, X0 = 1, N = 100, delta, drift, sigma,

drift.x, sigma.x, drift.xx, sigma.xx, drift.t,

method = c("euler", "milstein", "KPS", "milstein2",

"cdist","ozaki","shoji","EA"),

alpha = 0.5, eta = 0.5, pred.corr = T, rcdist = NULL,

theta = NULL, model = c("CIR", "VAS", "OU", "BS"),

k1, k2, phi, max.psi = 1000, rh, A, M=1)



The sde.sim function
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For the OU process, dXt = −5Xtdt + 3.5dWt, it is as easy as

> d <- expression(-5 * x)

> s <- expression(3.5)

> sde.sim(X0=10,drift=d, sigma=s) -> X

> str(X)

Time-Series [1:101] from 0 to 1: 10 9.32 8.79 8.89 8.48 ...



The sde.sim function
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For the CIR model dXt = (6 − 3Xt)dt + 2
√

XtdWt

d <- expression( 6-3*x )

s <- expression( 2*sqrt(x) )

sde.sim(X0=10,drift=d, sigma=s) -> X

or, via model name

sde.sim(X0=10, theta=c(6, 3, 2), model="CIR") -> X

or, via exact conditional distribution rcCIR (also implemented in sde)

sde.sim(X0=10, theta=c(6, 3, 2), rcdist=rcCIR, method="cdist") -> X
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The package also implements other estimation procedures

� estimating functions (linear, quadratic, martingale)

� GMM (but be careful, not really what you want to use with SDE!)

� approximate AIC statistics for model selection (sdeAIC)

� φ-divergence test statistics for parametric hypotheses testing (not in the book)

� change point (cpoint) analysis; both parametric and nonparametric

� non parametric estimation of drift (ksdrift) and diffusion (ksdiff) coefficients

� Markov Operator distance (MOdist) for clustering of SDE paths

The companion book: Simulation and Inference for Stochastic Differential Equations, with R

Examples, Springer (2008).
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