EULERIAN TOUR ALGORITHMS FOR DATA VISUALIZATION AND THE PAIRVIZ PACKAGE

Catherine Hurley NUI Maynooth

R.W. Oldford U. Waterloo

July 8 2009 UseR!

Graphics: Effect Ordering

- Packages: seriation, gclus, corrgram
- Example: PCP Flea data

Standard order

Correlation order

Pairviz: relationship ordering

Statistical graphics are about comparisons

between variables, cases, groups, models

Aede3 Aede2 Aede1 Tars2 Aede2 Aede1 Aede3 Tars2 Tars1 Head Tars2 Tars1 Aede1 Head Aede2 Tars1 Aede3 Head

Flea data: correlation order

A graph model

- Build a graph where nodes are statistical objects
- Edges are relationships
- Example:

Node	Vis	Edge	Vis	
Group	Boxplot	Two groups	CI for mean diff	
Var	Hist	Two vars	Scatterplot	
2 vars	Scat	4-d space	Dynamic scat	
Model	Resid	2 Models	PCP	

Example: planned comparisons

Mice in 5 diet groups, response is lifetime Nodes are treatments, edges are planned comparisons Weights are p-values

Planned comparisons of diets

Reducing calories and protein increases lifetime

Graph Traversal

• Traverse all nodes: hamiltonian path

Open hamiltonian path

Closed hamiltonian path

Closed eulerian path on K7

- Traverse all edges: eulerian path
- Use gclus, seriation: hamiltonian paths on complete graphs
- PairViz: eulerian paths

Graph Structures

- Complete graph: all comparisons are interesting
- Edge-weighted graphs: low weight edges are more interesting
- Bipartite graph

eg only treatment-control comparisons are of interest

Weight edges by I-corr, eulerian follows low weight edges

Graph Structures- cont'd

• Hypercube graph

Cube for factorial experiment

or model selection: Each node in G is a predictor subset edge: add/drop predictor

eg Each node in G is a var, each node in L(G) is var pair, edge is 3-d transition

Algorithms- Complete graph

- Closed eulerian path exists when each node has odd number of vertices: ie for K_{2n+1}
- Hamiltonian decomposition of graph
 - into hamiltonian cycles: eulerian for K_{2n+1}

- into hamiltonian paths: approx eulerian for K_{2n}
- classical algorithm: hpaths
- WHam: weighted_hpaths: pick best for H₁, best orientaton and order for others.

Algorithms-Complete graph cont'd

- Recursive algorithm: eseq:
- Start with eulerian on K_n , append edges to get eulerian on K_{n+2}

Algorithms- general

- Eulerian graph: connected, all nodes have even number of edges
- Otherwise, add edges, pairing up odd nodes Chinese postman does this in optimal way

- Classical algorithm (Hierholzer, Fleury)
- Our version GrEul, (etour) follows weight increasing edges

Algorithms comparison

Algorithm	Graph	Hamiltonians	Weights
eseq	complete	no	no
hpaths	complete	yes	no
weighted_hpaths	complete	yes	yes
eulerian	connected	no	optional

Complete-no weights

Algorithms: complete, weighted

Eurodist: 21 European cities

Example: model selection

Mammal sleep data Y= log brain wt. Predictors A= non dreaming sleep, B=dreaming sleep,

C=log body wt, D=life span

- Hypercube graph represents possible moves in a stepwise regression algorithm
- Graph Q_n is hamiltonian, and eulerian for even n
- Edge weights: change in SSE

- Eulerian starting with full model
- All models with C are good
- Bar chart: change in SSE

More variables

Sleep data: 10 vars (nodes) 45 edges Eulerian has length 50

Using outlying index from scagnostics package for eulerian traversal zoom on first half of display

More variables-cont'd

Reduce the graph NN graph: eliminate edges with outlier index < .2

Reduces graph from 10 to 5 nodes, and 45 to 5 edges Other nodes have no edges

IN CONCLUSION..

- Pairviz package: relationship ordering for data visualisation
- Current version: algorithms presented here
- Thanks to graph, igraph
- Work in progress: ordering dynamic visualisations via ggobi.

with Adrian Waddell, UW