# CoxFlexBoost: Fitting Structured Survival Models

Benjamin Hofner <sup>1</sup> Institut für Medizininformatik, Biometrie und Epidemiologie (IMBE) Friedrich-Alexander-Universität Erlangen-Nürnberg

joint work with Torsten Hothorn and Thomas Kneib Institut für Statistik Ludwig-Maximilians-Universität München

useR! 2009 - Rennes

<sup>&</sup>lt;sup>1</sup>benjamin.hofner@imbe.med.uni-erlangen.de

# Data Example -

# Intensive Care Patients with Severe Sepsis

- Response: 90-day survival
- Predictors: 14 categorical predictors (sex, fungal infection (y/n), ...)
   6 continuous predictors (age, Apache II Score, ...)
- Previous studies showed the presence of linear, non-linear and time-varying effects.

## Aims:

- flexible survival model for patients suffering from severe sepsis
- identify prognostic factors (at appropriate complexity)

Further Details of the Data-Set:

- Origin: Department of Surgery, Campus Großhadern, LMU Munich
- Period of observation: March 1993 February 2005 (12 years)
- N: 462 septic patients (180 observations right-censored)

## Structured Survival Models

- Cox PH model:  $\lambda_i(t) = \lambda(t, \mathbf{x}_i) = \lambda_0(t) \exp(\mathbf{x}'_i \beta)$
- Generalization: Structured Survival Models

$$\lambda_i(t) = \exp(\eta_i(t))$$

with additive predictor

$$\eta_i(t) = \sum_{l=1}^L f_l(\mathbf{x}_i(t)),$$

- Generic representation of covariate effects  $f_l(\mathbf{x}_i)$ 
  - a) linear effects:  $f_l(\mathbf{x}_i(t)) = f_{l,\text{linear}}(\tilde{x}_i) = \tilde{x}_i\beta$
  - b) smooth effects:  $f_l(\mathbf{x}_i(t)) = f_{l,\text{smooth}}(\tilde{x}_i)$
  - c) time-varying effects:  $f_l(\mathbf{x}_i(t)) = f_{l,smooth}(t) \cdot \tilde{x}_i$  (or  $f_l(\mathbf{x}_i(t)) = t\beta \cdot \tilde{x}_i$ )

where  $\tilde{x}_i$  is a covariate from  $\mathbf{x}_i(t)$ .

### Note:

c) includes log-baseline (
$$\tilde{x}_i \equiv 1$$
)

# Estimation

- Flexible terms  $f_{l,\text{smooth}}(\cdot)$  can be represented using P-splines (Eilers & Marx, 1996)
- This leads to:

## Penalized Likelihood Criterion:

$$\mathcal{L}_{\mathsf{pen}}(\boldsymbol{\beta}) = \sum_{i=1}^{n} \left[ \delta_{i} \eta_{i}(t_{i}) - \int_{0}^{t_{i}} \exp(\eta_{i}(t)) dt \right] - \sum_{l=0}^{L} \operatorname{pen}_{l}(\boldsymbol{\beta}_{l})$$

• NB: this is the **full** log-likelihood

## Problem:

Estimation and in particular model choice

- t<sub>i</sub> observed survival time
- $\delta_i$  indicator for non-censoring
- $pen_i(\beta_i)$  P-spline penalty for smooth effects

## **CoxFlexBoost**

### Aim:

Maximization of the log-likelihood with different modeling alternatives

### We use:

• Iterative algorithm called **Likelihood-based Boosting** with component-wise base-learners

Therefore:

 Use one base-learner g<sub>j</sub>(·) for each covariate (or each model component) [ j ∈ {1,..., J} ]

 $\Rightarrow$  Component-wise boosting as is used a means of estimation with intrinsic variable selection and model choice (as we will show now).

## **CoxFlexBoost**

### Aim:

Maximization of the log-likelihood with different modeling alternatives

#### We use:

• Iterative algorithm called Likelihood-based Boosting with component-wise base-learners

Therefore:

 Use one base-learner g<sub>j</sub>(·) for each covariate (or each model component) [ j ∈ {1,...,J} ]

 $\Rightarrow$  Component-wise boosting as is used a means of estimation with intrinsic variable selection and model choice (as we will show now).

# **CoxFlexBoost**

### Aim:

Maximization of the log-likelihood with different modeling alternatives

### We use:

• Iterative algorithm called Likelihood-based Boosting with component-wise base-learners

Therefore:

 Use one base-learner g<sub>j</sub>(·) for each covariate (or each model component) [ j ∈ {1,..., J} ]

 $\Rightarrow$  Component-wise boosting as is used a means of estimation with intrinsic variable selection and model choice (as we will show now).

# Some Details on CoxFlexBoost

After some initializations, in each boosting iteration m (until  $m = m_{stop}$ ):

- 1.) All base-learners  $g_j(\cdot)$  (i.e., modeling possibility) are fitted separately (based on penalized MLE).
- 2.) Choose best fitting base-learner  $\hat{g}_{j^*}$  (i.e., the base-learner that maximizes the unpenalized LH)
- 3.) Add ...
  - ... fraction  $\nu$  of the fit  $(\hat{g}_{j^*})$  to the model
  - $\ldots$  fraction u of the parameter estimate  $(eta_{\mathbf{j}^*})$  to the estimation

 $(\nu = 0.1 \text{ in our case})$ 

## What happens then?

(parameters of) previously selected base-learners are treated as a constant in the next iteration

# Variable Selection and Model Choice

- ... is achieved by
  - selection of base-learner, i.e., component-wise boosting (steps 1.) & 2.))

and

• early stopping,

i.e., estimate optimal stopping iteration  $\widehat{m}_{\rm stop,opt}$  via cross validation, bootstrap, . . .

- For Variable selection (without model choice): Define one base-learner per covariate e.g. flexible base-learner with 4 df
- For Variable selection and model choice: Define one base-learner per modeling possibility But the flexibility must be comparable! Otherwise: more flexible base-learners are preferred

# Specify Flexibility by Degrees of Freedom

- Specifying the flexibility via df is more intuitive than specifying it via the smoothing parameter κ.
- df can be used to make smooth effects comparable to other modeling components (e.g., linear effects).

Use initial  $\widetilde{df}_j$  ( $\stackrel{e.g.}{=}$  4) and solve

$$df(\kappa_j) - \widetilde{df}_j \stackrel{!}{=} 0$$



Problem 1: Not constant over the (boosting) iterations
 But simulation studies showed: No big deviation from the initial d

# Specify Flexibility by Degrees of Freedom

- Specifying the flexibility via df is more intuitive than specifying it via the smoothing parameter κ.
- df can be used to make smooth effects comparable to other modeling components (e.g., linear effects).

Use initial  $\widetilde{df}_j \stackrel{(e.g.}{=} 4$  and solve

$$df(\kappa_j) - \widetilde{df}_j \stackrel{!}{=} 0$$



Problem 1: Not constant over the (boosting) iterations
 But simulation studies showed: No big deviation from the initial *df<sub>j</sub>*

# Problem 2

- For P-splines with higher order differences ( $d \geq 2$ ): df > 1 ( $\kappa \to \infty$ )
- Polynomial of order d-1 remains unpenalized
- Solution:



- Add unpenalized part as separate, parametric base-learners
- Assign df = 1 to the centered effect (and add as P-spline base-learner)
- Analogously for time-varying effects

## Technical realization (see Fahrmeir, Kneib, & Lang, 2004):

decomposing the vector of regression coefficients  $\beta$  into  $(\tilde{\beta}_{unpen}, \tilde{\beta}_{pen})$  utilizing a spectral decomposition of the penalty matrix

# Problem 2

- For P-splines with higher order differences ( $d \geq 2$ ): df > 1 ( $\kappa \to \infty$ )
- Polynomial of order d-1 remains unpenalized
- Solution:



- Add unpenalized part as separate, parametric base-learners
- Assign df = 1 to the centered effect (and add as P-spline base-learner)
- Analogously for time-varying effects

## Technical realization (see Fahrmeir et al., 2004):

decomposing the vector of regression coefficients  $\beta$  into  $(\tilde{\beta}_{unpen}, \tilde{\beta}_{pen})$  utilizing a spectral decomposition of the penalty matrix

# Simulation Results (in short) Properties of CoxFlexBoost

- Good variable selection strategy
- Good model choice strategy if only linear and smooth effects are used
- Selection bias in favor of time-varying base-learners (if present)  $\Rightarrow$  standardizing time could be a solution
- Estimates are better if decomposition for model choice is used (compared to one flexible base-learner with 4 df)

## Using CoxFlexBoost - Intro in a Nutshell

- A (very) simple example:
  - model choice for sampled data with  $\lambda = \exp(0.7 \cdot x_1 + x_2^2)$
  - cfboost() is the main function
  - bols() represents ordinary least squares base-learners
  - bbs() represents penalized B-spline base-learners (i.e., P-splines)
  - weights are used to specify out-of-bag sample (weights[i] = 0)

```
R> summary(model_mstop)
  (...)
Number of selections in 44 iterations:
        bbs(x2): 24
        bols(x1): 18
        bbs(x3): 2
        bbs(x1): 0
        bols(x2): 0
        bols(x3): 0
```

Further base-learners:

- linear time-varying effects t β · x<sub>1</sub>: bolsTime(x = time, z = x1)
- smooth time-varying effects  $f_{smooth}(t) \cdot x_1$  with decomposition: bbsTime(x = time, z = x1, df = 4, center = TRUE)

# Application - Intensive Care Patients with Severe Sepsis (I)

We fitted a component-wise boosting model with P-spline decomposition to achieve model choice and variable selection to the severe sepsis data.

#### CoxFlexBoost

- selected 10 out of 20 variables + baseline hazard
- used 15 different base-learners (out of 68)
- $\Rightarrow$  sparse model

Out of 14 categorical covariates:

- 7 were selected
  - 2 were selected as linear effects
  - 4 were selected as time-varying effects
  - 1 was selected as linear and time-varying effect

Out of 6 continuous covariates:

- 3 were selected
  - 1 with linear effect
  - 2 with linear and time-varying effects

# Application - Intensive Care Patients with Severe Sepsis (I)

We fitted a component-wise boosting model with P-spline decomposition to achieve model choice and variable selection to the severe sepsis data.

#### CoxFlexBoost

- selected 10 out of 20 variables + baseline hazard
- used 15 different base-learners (out of 68)
- $\Rightarrow$  sparse model
  - Out of 14 categorical covariates:
    - 7 were selected
      - 2 were selected as linear effects
      - 4 were selected as time-varying effects
      - 1 was selected as linear and time-varying effect
  - Out of 6 continuous covariates:
    - 3 were selected
      - 1 with linear effect
      - 2 with linear and time-varying effects

# Application - Intensive Care Patients with Severe Sepsis (I)

We fitted a component-wise boosting model with P-spline decomposition to achieve model choice and variable selection to the severe sepsis data.

#### CoxFlexBoost

- selected 10 out of 20 variables + baseline hazard
- used 15 different base-learners (out of 68)
- $\Rightarrow$  sparse model

## Out of 14 categorical covariates:

- 7 were selected
  - 2 were selected as linear effects
  - 4 were selected as time-varying effects
  - 1 was selected as linear and time-varying effect

## Out of 6 continuous covariates:

- 3 were selected
  - 1 with linear effect
  - 2 with linear and time-varying effects

# Application - Intensive Care Patients with Severe Sepsis (II)

### Time-varying Effect for Categorical Variables:





# Messages "To Go"

R-package CoxFlexBoost available on R-forge (Hofner, 2008)

CoxFlexBoost ...

- ... allows for variable selection and model choice.
- ... allows for flexible modeling
  - flexible, non-linear effects
  - time-varying effects (i.e., non-proportional hazards)
- ... provides convenient functions to manipulate and show results (summary(), plot(), subset(), ...)
- ... provides built-in function cv() to compute m
  <sub>stop,opt</sub> via CV or bootstrap with possible usage of R-package multicore (Urbanek, 2009).

## References

- Hofner, B. (2008). CoxFlexBoost: Boosting Flexible Cox Models (with Time-Varying Effects). (R package version 0.6-0)
- Hofner, B., Hothorn, T., & Kneib, T. (2008). Variable selection and model choice in structured survival models (Tech. Rep. No. 43). Department of Statistics, Ludwig-Maximilans-Universität München.
- Eilers, P. H. C., & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. *Statistical Science*, *11*, 89–121.
- Fahrmeir, L., Kneib, T., & Lang, S. (2004). Penalized structured additive regression: A Bayesian perspective. *Statistica Sinica*, 14, 731–761.
- Gray, R. J. (1992). Flexible methods for analyzing survival data using splines, with application to breast cancer prognosis. *Journal of the American Statistical Association*, 87, 942–951.
- Kneib, T., Hothorn, T., & Tutz, G. (2009). Variable selection and model choice in geoadditive regression models. *Biometrics*, 65, 626–634.
- Urbanek, S. (2009). multicore: Parallel processing of R code on machines with multiple cores or cpus. (R package version 0.1-3)

#### Find out more: http://benjaminhofner.de/

# CoxFlexBoost Algorithm

## (i) **Initialization:** Iteration index m := 0.

• Function estimates (for all  $j \in \{1, \dots, J\}$ ):

 $\hat{f}_{j}^{[0]}(\cdot)\equiv 0$ 

• Offset (MLE for constant log hazard):

$$\hat{\eta}^{[0]}(\cdot) \equiv \log\left(\frac{\sum_{i=1}^{n} \delta_{i}}{\sum_{i=1}^{n} t_{i}}\right)$$

### (ii) **Estimation:** m := m + 1. Fit all (linear/P-spline) base-learners separately

$$\hat{g}_j = g_j(\cdot; \hat{\boldsymbol{\beta}}_j), \ \forall j \in \{1, \ldots, J\},$$

by penalized MLE.

Details on pMLE

$$\hat{oldsymbol{eta}}_{j} = rg\max_{oldsymbol{eta}} \mathcal{L}^{[m]}_{j,\mathsf{pen}}(oldsymbol{eta})$$

with the penalized log-likelihood (analogously as above)

$$\begin{split} \mathcal{L}_{j,\mathsf{pen}}^{[m]}(\boldsymbol{\beta}) &= \sum_{i=1}^n \left[ \delta_i \cdot (\hat{\eta}_i^{[m-1]} + g_j(x_i(t_i);\boldsymbol{\beta})) \right. \\ &\left. - \int_0^{t_i} \exp\left\{ \hat{\eta}_i^{[m-1]}(\tilde{\mathbf{t}}) + g_j(x_i(\tilde{\mathbf{t}});\boldsymbol{\beta}) \right\} d\tilde{\mathbf{t}} \right] - \mathsf{pen}_j(\boldsymbol{\beta}), \end{split}$$

with the additive predictor  $\eta_i$  split

- into the estimate from previous iteration  $\hat{\eta}_i^{[m-1]}$
- and the current base-learner  $g_j(\cdot; \beta)$

(iii) **Selection:** Choose base-learner  $\hat{g}_{j^*}$  with

$$j^* = \arg \max_{j \in \{1, \dots, J\}} \mathcal{L}_{j, \mathsf{unpen}}^{[m]}(\hat{\beta}_j)$$

(iv) Update:

• Function estimates (for all  $j \in \{1, \dots, J\}$ ):

$$\hat{f}_{j}^{[m]} = \begin{cases} \hat{f}_{j}^{[m-1]} + \nu \cdot \hat{g}_{j} & j = j^{*} \\ \hat{f}_{j}^{[m-1]} & j \neq j^{*} \end{cases}$$

• Additive predictor (= fit):

$$\hat{\eta}^{[m]} = \hat{\eta}^{[m-1]} + \boldsymbol{\nu} \cdot \hat{g}_{j^*}$$

with step-length  $u \in (0,1]$  (here: u = 0.1)

(v) **Stopping rule:** Continue iterating steps (ii) to (iv) until  $m = m_{stop}$