Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk

Axel Gandy

Department of Mathematics Imperial College London a.gandy@imperial.ac.uk

> useR! 2009, Rennes July 8-10, 2009

- ► Test statistic *T*, reject for large values.
- ▶ Observation: t.
- p-value:

$$p = P(T \ge t)$$

Often not available in closed form.

Monte Carlo Test:

$$\hat{p}_{\text{naive}} = \frac{1}{n} \sum_{i=1}^{n} I(T_i \geq t),$$

where $T, T_1, \ldots T_n$ i.i.d.

- ► Examples:
 - ▶ Bootstrap,
 - Permutation tests.
- Goal: Estimate p using few X_i

Mainly interested in deciding if $p \leq \alpha$ for some α .

- ▶ Test statistic *T*, reject for large values.
- ▶ Observation: t.
- p-value:

$$p = P(T \ge t)$$

Often not available in closed form.

Monte Carlo Test:

$$\hat{p}_{\text{naive}} = \frac{1}{n} \sum_{i=1}^{n} \underbrace{\mathbb{I}(T_i \ge t)}_{=:X_i \sim B(1,p)},$$

where $T, T_1, \ldots T_n$ i.i.d.

- Examples:
 - ▶ Bootstrap,
 - Permutation tests.
- ▶ Goal: Estimate p using few X_i

Mainly interested in deciding if $p \leq \alpha$ for some α .

- ▶ Test statistic *T*, reject for large values.
- Observation: t.
- p-value:

$$p = P(T \ge t)$$

Often not available in closed form.

Monte Carlo Test:

$$\hat{p}_{\text{naive}} = \frac{1}{n} \sum_{i=1}^{n} \underbrace{\mathbb{I}(T_i \ge t)}_{=:X_i \sim B(1,p)},$$

where $T, T_1, \ldots T_n$ i.i.d.

- Examples:
 - ▶ Bootstrap,
 - Permutation tests.
- ▶ Goal: Estimate p using few X_i

Mainly interested in deciding if $p \leq \alpha$ for some α .

Axel Gandy

- ▶ Test statistic *T*, reject for large values.
- ▶ Observation: t.
- p-value:

$$p = P(T \ge t)$$

Often not available in closed form.

► Monte Carlo Test:

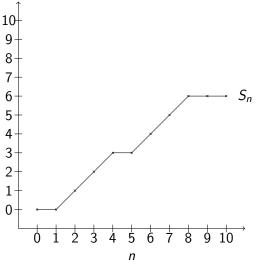
$$\hat{p}_{\text{naive}} = \frac{1}{n} \sum_{i=1}^{n} \underbrace{\mathbb{I}(T_i \ge t)}_{=:X_i \sim B(1,p)},$$

where $T, T_1, \ldots T_n$ i.i.d.

- Examples:
 - ► Bootstrap,
 - Permutation tests.
- ▶ Goal: Estimate p using few X_i

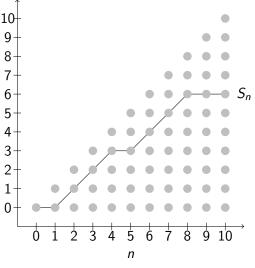
Mainly interested in deciding if $p \leq \alpha$ for some α .

Sequential approaches based on $S_n = \sum_{i=1}^n X_i$



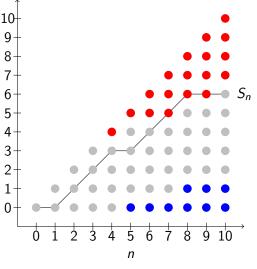
- Stop once $S_n \ge U_n$ or $S_n < L_n$
- ightharpoonup au: hitting time
- ► Compute \hat{p} based on S_{τ} and τ .
- ▶ Hit B_U : decide $p > \alpha$,
- ▶ Hit B_L : decide $p \leq \alpha$

Sequential approaches based on $S_n = \sum_{i=1}^n X_i$



- Stop once $S_n \ge U_n$ or $S_n \le L_n$
- ightharpoonup au: hitting time
- ▶ Compute \hat{p} based on S_{τ} and τ .
- ▶ Hit B_U : decide $p > \alpha$,
- ▶ Hit B_L : decide $p \leq \alpha$,

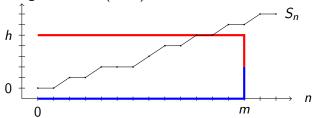
Sequential approaches based on $S_n = \sum_{i=1}^n X_i$



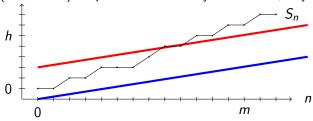
- ► Stop once $S_n \ge U_n$ or $S_n \le L_n$
- ightharpoonup au: hitting time
- ▶ Compute \hat{p} based on S_{τ} and τ .
- ▶ Hit B_U : decide $p > \alpha$,
- ▶ Hit B_L : decide $p \leq \alpha$,

Previous Approaches

► Besag & Clifford (1991):



► (Truncated) Sequential Probability Ratio Test, Fay et al. (2007)



► R-package MChtest.

Is
$$p \leq \alpha$$
?

Two individuals using the same statistical method on the same data should arrive at the same conclusion.

First law of applied statistics, Gleser (1996)

Consider the resampling risk

$$RR_{p}(\hat{p}) \equiv \begin{cases} P_{p}(\hat{p} > \alpha) & \text{if } p \leq \alpha, \\ P_{p}(\hat{p} \leq \alpha) & \text{if } p > \alpha. \end{cases}$$

Want

$$\sup_{p \in [0,1]} \mathsf{RR}_p(\hat{p}) \leq \epsilon$$

for some (small) $\epsilon>0$. For Besag & Clifford (1991), SPRT: $\mathsf{sup}_p\,\mathsf{RR}_P\geq0.5$

Is
$$p \leq \alpha$$
?

Two individuals using the same statistical method on the same data should arrive at the same conclusion.

First law of applied statistics, Gleser (1996)

Consider the resampling risk

$$RR_{p}(\hat{p}) \equiv \begin{cases} P_{p}(\hat{p} > \alpha) & \text{if } p \leq \alpha, \\ P_{p}(\hat{p} \leq \alpha) & \text{if } p > \alpha. \end{cases}$$

Want

$$\sup_{p \in [0,1]} \mathsf{RR}_p(\hat{p}) \le \epsilon$$

for some (small) $\epsilon>0$. For Besag & Clifford (1991), SPRT: $\sup_{
ho} \mathsf{RR}_{P} \geq 0.5$

Is
$$p \leq \alpha$$
?

Two individuals using the same statistical method on the same data should arrive at the same conclusion.

First law of applied statistics, Gleser (1996)

Consider the resampling risk

$$RR_{p}(\hat{p}) \equiv \begin{cases} P_{p}(\hat{p} > \alpha) & \text{if } p \leq \alpha, \\ P_{p}(\hat{p} \leq \alpha) & \text{if } p > \alpha. \end{cases}$$

Want:

$$\sup_{p \in [0,1]} \mathsf{RR}_p(\hat{p}) \le \epsilon$$

for some (small) $\epsilon>0$. For Besag & Clifford (1991), SPRT: $\sup_{\scriptscriptstyle D} \mathsf{RR}_{P} \geq 0.5$

Is
$$p \leq \alpha$$
?

Two individuals using the same statistical method on the same data should arrive at the same conclusion.

First law of applied statistics, Gleser (1996)

Consider the resampling risk

$$\mathsf{RR}_{p}(\hat{p}) \equiv \begin{cases} \mathsf{P}_{p}(\hat{p} > \alpha) & \text{if } p \leq \alpha, \\ \mathsf{P}_{p}(\hat{p} \leq \alpha) & \text{if } p > \alpha. \end{cases}$$

Want:

$$\sup_{p \in [0,1]} \mathsf{RR}_p(\hat{p}) \le \epsilon$$

for some (small) $\epsilon>0$. For Besag & Clifford (1991), SPRT: $\sup_{\scriptscriptstyle D} \mathsf{RR}_{P} \geq 0.5$

Is
$$p \leq \alpha$$
?

Two individuals using the same statistical method on the same data should arrive at the same conclusion.

First law of applied statistics, Gleser (1996)

Consider the resampling risk

$$\mathsf{RR}_{p}(\hat{p}) \equiv \begin{cases} \mathsf{P}_{p}(\hat{p} > \alpha) & \text{if } p \leq \alpha, \\ \mathsf{P}_{p}(\hat{p} \leq \alpha) & \text{if } p > \alpha. \end{cases}$$

Want:

$$\sup_{p \in [0,1]} \mathsf{RR}_p(\hat{p}) \le \epsilon$$

for some (small) $\epsilon > 0$.

Is
$$p \leq \alpha$$
?

Two individuals using the same statistical method on the same data should arrive at the same conclusion.

First law of applied statistics, Gleser (1996)

Consider the resampling risk

$$\mathsf{RR}_{p}(\hat{p}) \equiv \begin{cases} \mathsf{P}_{p}(\hat{p} > \alpha) & \text{if } p \leq \alpha, \\ \mathsf{P}_{p}(\hat{p} \leq \alpha) & \text{if } p > \alpha. \end{cases}$$

Want:

$$\sup_{p \in [0,1]} \mathsf{RR}_p(\hat{p}) \le \epsilon$$

for some (small) $\epsilon > 0$. For Besag & Clifford (1991), SPRT: $\sup_{n} RR_{P} \geq 0.5$

Want:

$$\sup_{p} \mathsf{RR}_{p}(\hat{p}) \leq \epsilon$$

$$\mathsf{P}_{lpha}(\mathsf{hit}\;B_{oldsymbol{U}}) \leq \epsilon \ \mathsf{P}_{lpha}(\mathsf{hit}\;B_{oldsymbol{L}}) \leq \epsilon \ .$$

$$P_{\alpha}(\text{hit }B_{U} \text{ until } n) \leq \epsilon_{n}$$

$$P_{\alpha}(\text{hit }B_{L} \text{ until } n) \leq \epsilon_{r}$$

Want:

$$\sup_{p} \mathsf{RR}_{p}(\hat{p}) \leq \epsilon$$

Suffices to ensure

$$P_{\alpha}(\text{hit }B_{U}) \leq \epsilon$$
 $P_{\alpha}(\text{hit }B_{L}) \leq \epsilon$

Recursive definition:

Given U_1, \ldots, U_{n-1} and L_1, \ldots, L_{n-1} , define

▶ U_n as the minimal value such that

$$\mathsf{P}_{\!lpha}(\mathsf{hit}\; extstyle{B_U}\; \mathsf{until}\; n) \leq \epsilon_n$$

▶ and L_n as the maximal value such that

$$P_{\alpha}(\text{hit }B_{L} \text{ until }n) \leq \epsilon_{n}$$

where $\epsilon_n \geq 0$ with $\epsilon_n \nearrow \epsilon$ (spending sequence).

Want:

$$\sup_{p} \mathsf{RR}_{p}(\hat{p}) \leq \epsilon$$

Suffices to ensure

$$P_{\alpha}(\text{hit }B_{U}) \leq \epsilon$$

 $P_{\alpha}(\text{hit }B_{L}) \leq \epsilon$

Recursive definition:

Given U_1, \ldots, U_{n-1} and L_1, \ldots, L_{n-1} , define

 $ightharpoonup U_n$ as the minimal value such that

$$P_{\alpha}(\text{hit }B_{U} \text{ until } n) \leq \epsilon_{n}$$

 \triangleright and L_n as the maximal value such that

$$P_{\alpha}(\text{hit }B_{L} \text{ until }n) \leq \epsilon_{n}$$

where $\epsilon_n \geq 0$ with $\epsilon_n \nearrow \epsilon$ (spending sequence).

Want:

$$\sup_{p} \mathsf{RR}_{p}(\hat{p}) \leq \epsilon$$

Suffices to ensure

$$P_{\alpha}(\text{hit }B_{U}) \leq \epsilon$$
 $P_{\alpha}(\text{hit }B_{L}) \leq \epsilon$

Recursive definition:

Given U_1, \ldots, U_{n-1} and L_1, \ldots, L_{n-1} , define

 \triangleright U_n as the minimal value such that

$$P_{\alpha}(\text{hit }B_{U} \text{ until } n) \leq \epsilon_{n}$$

 \triangleright and L_n as the maximal value such that

$$P_{\alpha}(\text{hit }B_{L} \text{ until }n) \leq \epsilon_{n}$$

where $\epsilon_n \geq 0$ with $\epsilon_n \nearrow \epsilon$ (spending sequence).

- $\alpha = 0.2, \ \epsilon_n = 0.4 \frac{n}{5+n}.$
- \triangleright U_n =the minimal value such that

$$P_{\alpha}(\text{hit }B_{U}\text{ until }n) \leq \epsilon_{n}$$

$$P_{\alpha}(\text{hit }B_{L} \text{ until }n) \leq \epsilon_{n}$$

	n =
$P_{\alpha}(S_n = k, \tau \geq n)$	0
k= 3	
k= 2	
k=1	
k= 0	1
ϵ_n	0
$\overline{U_n}$	1
Ln	-1

- $\alpha = 0.2$, $\epsilon_n = 0.4 \frac{n}{5+n}$.
- \triangleright U_n =the minimal value such that

$$P_{\alpha}(\text{hit }B_{U}\text{ until }n) \leq \epsilon_{n}$$

$$P_{\alpha}(\text{hit }B_{L} \text{ until }n) \leq \epsilon_{n}$$

			n =
$P_{\alpha}(S_n = k, \tau \geq n)$	0	1	
k= 3			
k=2			
k=1		.2	
k= 0	1	.8	
ϵ_n	0	.07	
$\overline{U_n}$	1	2	
L_n	-1	-1	

- $\alpha = 0.2$, $\epsilon_n = 0.4 \frac{n}{5+n}$.
- \triangleright U_n =the minimal value such that

$$P_{\alpha}(\text{hit }B_{U}\text{ until }n) \leq \epsilon_{n}$$

$$P_{\alpha}(\text{hit }B_{L} \text{ until } n) \leq \epsilon_{n}$$

				n =
$P_{\alpha}(S_n = k, \tau \geq n)$	0	1	2	
k= 3				
k=2			.04	
k=1		.2	.32	
k= 0	1	.8	.64	
ϵ_n	0	.07	.11	
$\overline{U_n}$	1	2	2	
L_n	-1	-1	-1	

- $\alpha = 0.2, \ \epsilon_n = 0.4 \frac{n}{5+n}$
- \triangleright U_n =the minimal value such that

$$P_{\alpha}(\text{hit }B_{U}\text{ until }n) \leq \epsilon_{n}$$

$$P_{\alpha}(\text{hit }B_{L} \text{ until }n) \leq \epsilon_{n}$$

					n =
$P_{\alpha}(S_n = k, \tau \geq n)$	0	1	2	3	
k= 3					
k=2			.04	.06	
k=1		.2	.32	.38	
k= 0	1	.8	.64	.51	
ϵ_n	0	.07	.11	.15	
U_n	1	2	2	2	
L_n	-1	-1	-1	-1	

- $\alpha = 0.2, \ \epsilon_n = 0.4 \frac{n}{5+n}$
- \triangleright U_n =the minimal value such that

$$P_{\alpha}(\text{hit }B_{U}\text{ until }n) \leq \epsilon_{n}$$

$$P_{\alpha}(\text{hit }B_{L} \text{ until } n) \leq \epsilon_{n}$$

					n =	
$P_{\alpha}(S_n = k, \tau \geq n)$	0	1	2	3	4	
k= 3						
k= 2			.04	.06	.08	
k=1		.2	.32	.38	.41	
k= 0	1	.8	.64	.51	.41	
ϵ_n	0	.07	.11	.15	.18	
$\overline{U_n}$	1	2	2	2	3	
L_n	-1	-1	-1	-1	-1	

- $\alpha = 0.2, \ \epsilon_n = 0.4 \frac{n}{5+n}.$
- \triangleright U_n =the minimal value such that

$$P_{\alpha}(\text{hit }B_{U}\text{ until }n) \leq \epsilon_{n}$$

$$P_{\alpha}(\text{hit }B_{L} \text{ until }n) \leq \epsilon_{n}$$

					n =		
$P_{\alpha}(S_n = k, \tau \geq n)$	0	1	2	3	4	5	
k= 3						.02	
k= 2			.04	.06	.08	.14	
k=1		.2	.32	.38	.41	.41	
k= 0	1	.8	.64	.51	.41	.33	
ϵ_n	0	.07	.11	.15	.18	.20	
$\overline{U_n}$	1	2	2	2	3	3	
Ln	-1	-1	-1	-1	-1	-1	

- $\alpha = 0.2, \ \epsilon_n = 0.4 \frac{n}{5+n}.$
- \triangleright U_n =the minimal value such that

$$P_{\alpha}(\text{hit }B_{U}\text{ until }n) \leq \epsilon_{n}$$

$$P_{\alpha}(\text{hit }B_{L} \text{ until }n) \leq \epsilon_{n}$$

	n =								
$P_{\alpha}(S_n = k, \tau \geq n)$	0	1	2	3	4	5	6		
k= 3						.02	.03		
k= 2			.04	.06	.08	.14	.20		
k=1		.2	.32	.38	.41	.41	.39		
k= 0	1	.8	.64	.51	.41	.33	.26		
ϵ_n	0	.07	.11	.15	.18	.20	.22		
U_n	1	2	2	2	3	3	3		
L_n	-1	-1	-1	-1	-1	-1	-1		

- $\alpha = 0.2, \ \epsilon_n = 0.4 \frac{n}{5+n}.$
- \triangleright U_n =the minimal value such that

$$P_{\alpha}(\text{hit }B_{U}\text{ until }n) \leq \epsilon_{n}$$

$$P_{\alpha}(\text{hit }B_{L} \text{ until }n) \leq \epsilon_{n}$$

	n =										
$P_{\alpha}(S_n = k, \tau \geq n)$	0	1	2	3	4	5	6	7			
k= 3						.02	.03	.04			
k= 2			.04	.06	.08	.14	.20	.24			
k=1		.2	.32	.38	.41	.41	.39	.37			
k= 0	1	.8	.64	.51	.41	.33	.26	.21			
ϵ_n	0	.07	.11	.15	.18	.20	.22	.23			
$\overline{U_n}$	1	2	2	2	3	3	3	3			
L_n	-1	-1	-1	-1	-1	-1	-1	0			

- $\alpha = 0.2, \ \epsilon_n = 0.4 \frac{n}{5+n}.$
- \triangleright U_n =the minimal value such that

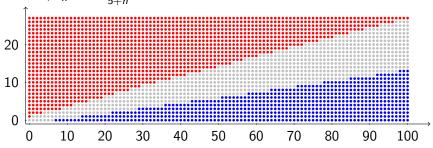
$$P_{\alpha}(\text{hit }B_{U}\text{ until }n) \leq \epsilon_{n}$$

$$P_{\alpha}(\text{hit }B_{L} \text{ until }n) \leq \epsilon_{n}$$

	n =										
$P_{\alpha}(S_n = k, \tau \geq n)$	0	1	2	3	4	5	6	7	8		
k= 3						.02	.03	.04	.05		
k= 2			.04	.06	.08	.14	.20	.24	.26		
k=1		.2	.32	.38	.41	.41	.39	.37	.29		
k= 0	1	.8	.64	.51	.41	.33	.26	.21			
ϵ_n	0	.07	.11	.15	.18	.20	.22	.23	.25		
$\overline{U_n}$	1	2	2	2	3	3	3	3	3		
L_n	-1	-1	-1	-1	-1	-1	-1	0	0		

Sequential Decision Procedure - Example

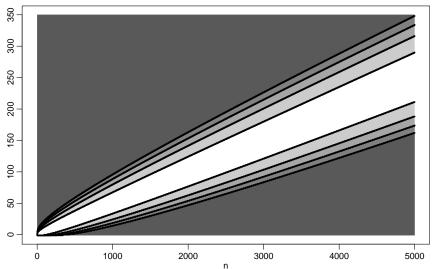
$$\alpha = 0.2$$
, $\epsilon_n = 0.4 \frac{n}{5+n}$.



n

Influence of ϵ on the stopping rule

$$\epsilon = 0.1, \ 0.001, \ 10^{-5}, \ 10^{-7}; \ \epsilon_n = \epsilon \frac{n}{1000 + n}$$



Sequential Estimation based on the MLE

$$\hat{p} = \begin{cases} \frac{S_{\tau}}{\tau}, & \tau < \infty \\ \alpha, & \tau = \infty, \end{cases}$$

- One can show:
 - hitting the upper boundary implies $\hat{p} > \alpha$,
 - hitting the lower boundary implies $\hat{p} < \alpha$.

Hence,

$$\sup_{p} \mathsf{RR}_{p}(\hat{p}) \leq \epsilon$$

- Furthermore, \exists random interval I_n s.t.
 - $ightharpoonup I_n$ only depends on X_1, \ldots, X_n
 - $\hat{p} \in I_n$.

Example - Two-way sparse contingency table

- \blacktriangleright H_0 : variables are independent.
- Reject for large values of the likelihood ratio test statistic T
- ▶ $T \xrightarrow{d} \chi^2_{(7-1)(5-1)}$ under H_0 . Based on this: p = 0.031.
- Matrix sparse approximation poor?
- Use parametric bootstrap based on row and column sums.
- Naive test statistic \hat{p}_{naive} with n = 1,000 replicates p = 0.041 < 0.05.

Example - Two-way sparse contingency table

- ► *H*₀: variables are independent.
- Reject for large values of the likelihood ratio test statistic T
- ▶ $T \xrightarrow{d} \chi^2_{(7-1)(5-1)}$ under H_0 . Based on this: p = 0.031.
- ► Matrix sparse approximation poor?
- Use parametric bootstrap based on row and column sums.
- Naive test statistic \hat{p}_{naive} with n = 1,000 replicates: p = 0.041 < 0.05.

Example - Two-way sparse contingency table

- $ightharpoonup H_0$: variables are independent.
- ▶ Reject for large values of the likelihood ratio test statistic T
- ▶ $T \xrightarrow{d} \chi^2_{(7-1)(5-1)}$ under H_0 . Based on this: p = 0.031.
- ► Matrix sparse approximation poor?
- Use parametric bootstrap based on row and column sums.
- Naive test statistic \hat{p}_{naive} with n = 1,000 replicates: p = 0.041 < 0.05. Probability of reporting p > 0.05: roughly 0.08.

Example - Bootstrap and Sequential Algorithm

```
> dat <- matrix(c(1,2,2,1,1,0,1, 2,0,0,2,3,0,0, 0,1,1,1,2,7,3, 1,1,2,0,0,0,1,
                  0,1,1,1,1,0,0), nrow=5,ncol=7,byrow=TRUE)
> loglikrat <- function(data){
+ cs <- colSums(data); rs <- rowSums(data); mu <- outer(rs,cs)/sum(rs)
   2*sum(ifelse(data<=0.5, 0,data*log(data/mu)))
+ }
> resample <- function(data){</pre>
+ cs <- colSums(data);rs <- rowSums(data); n <- sum(rs)
   mu <- outer(rs,cs)/n/n
   matrix(rmultinom(1,n,c(mu)),nrow=dim(data)[1],ncol=dim(data)[2])
+ }
> t <- loglikrat(dat);</pre>
> library(simctest)
> res <- simctest(function(){loglikrat(resample(dat))>=t},maxsteps=1000)
> res
No decision reached.
Final estimate will be in [ 0.02859135 , 0.07965451 ]
Current estimate of the p.value: 0.041
Number of samples: 1000
> cont(res, steps=10000)
p.value: 0.04035456
Number of samples: 8574
```

4 🗇 ▶

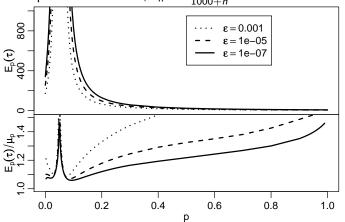
Further Uses of the Algorithm

- Simulation study to evaluate whether a test is liberal/conservative.
- ▶ Determining the sample size to achieve a certain power.
- ▶ Iterated Use:
 - Determining the power of a bootstrap test.
 - Simulation study to evaluate whether a bootstrap test is liberal/conservative.
 - Double bootstrap test.

Expected Hitting Time

Result: $E_p(\tau) < \infty \ \forall p \neq \alpha$

Example with $\alpha = 0.05$, $\epsilon_n = \epsilon \frac{n}{1000+n}$:



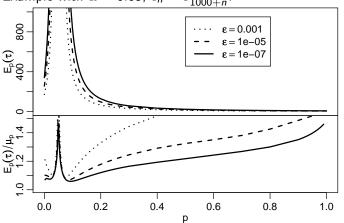
 μ_p = theoretical lower bound on $E_p(\tau)$.

- Note: $\int_0^1 \mu_p dp = \infty$;
- ▶ for iterated use: Need to limit the number of steps.

Expected Hitting Time

Result: $E_p(\tau) < \infty \ \forall p \neq \alpha$

Example with $\alpha = 0.05$, $\epsilon_n = \epsilon \frac{n}{1000+n}$:



 μ_p = theoretical lower bound on $E_p(\tau)$.

- Note: $\int_0^1 \mu_p dp = \infty$;
- ▶ for iterated use: Need to limit the number of steps.

Summary

- Sequential implementation of Monte Carlo Tests and computation of p-values.
- Useful when implementing tests in packages.
- After a finite number of steps:
 - \triangleright \hat{p} or
 - ▶ interval $[\hat{p}_n^L, \hat{p}_n^U]$ in which \hat{p} will lie.
- Guarantee (up to a very small error probability):

 \hat{p} is on the "correct side" of α .

- R-package simctest available on CRAN. (efficient implementation with C-code)
- ► For details see Gandy (2009).

References

- Besag, J. & Clifford, P. (1991). Sequential Monte Carlo p-values. *Biometrika* **78**, 301–304.
- Davison, A. & Hinkley, D. (1997). Bootstrap methods and their application. Cambridge University Press.
- Fay, M. P., Kim, H.-J. & Hachey, M. (2007). On using truncated sequential probability ratio test boundaries for Monte Carlo implementation of hypothesis tests. *Journal of Computational & Graphical Statistics* **16**, 946 967.
- Gandy, A. (2009). Sequential implementation of Monte Carlo tests with uniformly bounded resampling risk. Accepted for publication in JASA.
- Gleser, L. J. (1996). Comment on *Bootstrap Confidence Intervals* by T. J. DiCiccio and B. Efron. *Statistical Science* 11, 219–221.

