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Task: Stopping rule (finding the “Best model”

on the Forward selection path)

(Some Zeros)



Why forward selection ?

Motivation – Big (m) datasets:
1) Fast results

• Simple models

• Simple procedure

2) Good results

3) Easy to use



Finding variables Over fitting

Penalty

Model

Size

Minimize



λ type examples for “big”

models

constant  

λ

• λa= 2                   (AIC) •Over fitting

Non-constant 

(adaptive)

λ

• λn =    log(n)       (BIC) 

• λm = 2log(m) (universal-threshold)

• …

• λk,m =    ?

•Better results

•Faster then 

bootstraping.

Minimize

How to choose λ ?
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Multiple Step FDR

(MSFDR)

Adaptive Penalty



Model selection multiple testing
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Orthogonal X matrix => non changing, coefficients “at once”:

Keeping (Beta) P-values which are bellow α� forward selection

But how should we adjust for multiplicity of the many tests?
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How to adjust for multiplicity?

q

keeping Approach Principle properties

FWE

(familywise

error rate)

Keeping the probability of 

making one or more false 

discoveries.

•Conservative

•Low-power

FDR

(False discovery 

rate)

Controlling 

the expected proportion of 

incorrectly rejected null out of 

the rejected

•Not “too 

permissive”

•high-power

α



Coefficient P value

(0.16=AIC)

Bonferroni

(FWE)

BH –

(FDR at             )

Adaptive - Step down

Over 

fitting

Low power More power
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Theoretical motivation – results

The minimax properties of the BH procedure  

were proved (in ABDJ 2006*) asymptotically

for:

• large m, <and >

• orthogonal variables, <and >

• for sparse signals.

*ABRAMOVICH, F., BENJAMINI, Y., DONOHO, D. and JOHNSTONE, I. (2006).

Adapting to unknown sparsity by controlling the false discovery rate. Ann. Statist.



Coefficient P value

(0.16=AIC)

Bonferroni

(FWE)

BH –

(FDR at             )

Adaptive BH –

(FDR at  level q)

Adaptive - Step down

Over 

fitting

Low power More power More power 

for richer models
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BH –

(FDR at             )

Adaptive BH –

(FDR at  level q)

Adaptive - Step down

More power More power 

for richer models

0m
q

m
⋅

i
q

m ( )1 1

i
q

m i q+ − −

( )

2

,

1
2 1 1

1 k

k m q i
i

m i q

z
k

λ
 
• =  + − − 

= ∑

2

,

1 2

1 k

k m q i

i m

z
k

λ
 • =  

= ∑

model size VS

Penalty factor



Forward-selection - Multiple stage FDR:

(a.k.a: MSFDR)

1. Fit Empty model 

2. Find the “best” variables (Xi*) to enter (with 

the smallest P value)

3. Is this true ?

1. Yes - Enter Xi and repeat (step 2)

2. No – Finish.



R implementation - stepAIC



Modeling the diabetes data (Efron et al., 2004)

• n=442 diabetes patients.

• m= 64  (10 baseline variables 

with 45 paired and 9 squared interactions ).

• Y - disease progression (a year after baseline)



Factor P-value P-to-enter

bmi 230.740.000000 0.000781 11.29 0.342

ltg 93.86 0.000000 0.001585 10.63 0.457

map 17.36 0.000037 0.002414 10.16 0.477

age.sex 13.56 0.000259 0.003268 9.78 0.491

bmi.map 9.60 0.002076 0.004149 9.47 0.501

hdl 9.00 0.002859 0.005059 9.20 0.510

sex 16.23 0.000066 0.005998 8.96 0.527

glu.2 5.75 0.016920 0.006969 8.75 0.531

age.2 2.58 0.109060 0.007972 8.56 0.533

Modeling the diabetes data (Efron et al., 2004)

2

d f
t

,k mλ ( )
2  adjR



Modeling the diabetes data (Efron et al., 2004)

Method

Number of 

variables R^2

MS_FDR (q=.05), 
BIC, universal-threshold 7 0.53

AIC 9 0.54

LARS (with Cp) 16 0.55

Over fitting



Simulation - configurations

•7 penalty based model selection procedures 

• m = 20, 40, 80, 160,  Ratio: n = 2*m

• proportion of non-zero

• Dependencies in X:

ρ = 0.5, 0,−0.5

• β = 1 constant (with           ), 2 rates of 

decrease (in one minimal β is constant)

• Computation – avg MSPE over 1000 runs 

• done on 80 computers (distributed computing)
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Simulation – Comparison methodology

1) Compute the ratio:

(For each model)

Random Oracle = the “best” model we could 

find on our search path

2) For each procedure

Over all simulation configuration

find the worst ratio – and compare them

m o d el

ran d o m  o rac le

M S P E

M S P E



Simulation – results

•forward selection procedure

•Cp

•the universal threshold in Donoho and Johnstone (1994)

•Birgé and Massart (2001)

•Foster and Stine (2004)

•Tibshirani and Knight (1999)

•multiple-stage procedure in Benjamini, Krieger and Yekutieli (2006) and Gavrilov, Benjamini and Sarkar (2009)—MSFDR

Comparing the minimax between procedure



R implementation – biglm + leaps



Future research

• Beyond Linear regression? (logistic and 

more)

• Beyond forward selection? (Mixed with 

Lasso and more)

• More variables then observation? (m>n)



www.R-Statistics.com

Tal.Galili@gmail.com

Thank you!

Questions?
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Simulation – Comparison methodology

Challenge (1): Path performance depends on simulation

(while exhaustive search over all subsets – impossible!)

What do we compare to ?

Solution (1): a “random oracle”

1)Find the “best” model on the forward path of nested models

Example: for the path:  X7, X20, X5, X9 …

The possible subsets are: {X7},{X7, X20}, {X7, X20, X5} …

2)Compare current models with random oracle

m o d el

ran d o m  o rac le

M S P E

M S P E



Simulation – Comparison methodology

Challenge (2): MSPE changes per configuration, so how do we 

compare algorithms?

Solution (2):  search for “empirical minimax performance” –

find the minimum across “maximum relative MSPE 

over the configurations”



Simulation – conclusions



Simulation – results (extended)



Earlier studies limitations:

1)Constant coefficients 

(mostly)

2)Largest m = 50

3)NOT Compared to other 

non-constant adaptive 

penalties



For orthogonal X matrix: ( ) 1

1
ˆ ˆ ˆ,..., mX X nI n X yβ β β −′′ ′= → = =

Forward selection is like sorting the P-values and then keeping only 

who ever is smaller then α:
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The difference of each step is of the standardized coefficient, since:



BH –

(FDR at             )

Adaptive BH –

(FDR at  level q)

Adaptive - Step down

More power More power 

for richer models

0m
q

m
⋅

i
q

m ( )1 1

i
q

m i q+ − −

1
2 2

2 2
1

1
2 2 2 2

1
2 21 1

k

i

k k

k k

i i

z z

RSS z RSS z

α α

α ασ σ

−

=

−

−
= =

+

+ ≤ +

∑

∑ ∑
123

An adaptive
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What this is NOT:

1. Fit full model – then check the P values

2. Fit m “small” models – then check the P 

values



( ): 1

:

FWE P V

V
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R
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Correction for multiple testing

Very conservative, 

Low power

Different objective, 

More power


