

with adaptive penalties procedures based on the FDR criteria"

Tal Galili Tel Aviv University

Based on the paper by YOAV BENJAMINI and YULIA GAVRILOV "A SIMPLE FORWARD SELECTION PROCEDURE BASED ON FALSE DISCOVERY RATE CONTROL" (Annals of Applied Statistics 2009)

 $X = (x_1, \ldots, x_m)$ is an $n \times m$ matrix $\beta = (\beta_1, \dots, \beta_m)$ (Some <u>Zeros</u>) $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_m) \sim N(0, \sigma^2 I)$

Task: Stopping rule (finding the "Best model" on the Forward selection path)

Why forward selection ?

Motivation – Big (m) datasets:

1) Fast results

- Simple models
- Simple procedure
- 2) Good results

3) Easy to use

How to choose λ ?

λ type	examples	for "big" models					
constant λ	• $\lambda_a = 2$ (AIC)	•Over fitting					
Non-constant (adaptive) λ	• $\lambda n = \log(n)$ (BIC) • $\lambda m = 2\log(m)$ (universal-threshold) • • $\lambda k, m = ?$	 Better results Faster then bootstraping. 					
$\frac{\text{Minimize}}{RSS_k + \sigma^2 k \lambda}$							

Orthogonal X matrix => non changing, coefficients "at once":

$$X'X = nI \rightarrow \hat{\beta} = \left(\hat{\beta}_1, \dots, \hat{\beta}_m\right)' = n^{-1}X'y$$

Keeping (Beta) P-values which are bellow $\alpha \Leftrightarrow$ forward selection

But how should we adjust for multiplicity of the many tests?

How to adjust for multiplicity?

Approach	Principle	keeping	properties
FWE (familywise error rate)	Keeping the probability of making one or more false discoveries.	α	ConservativeLow-power
FDR (False discovery rate)	Controlling the <u>expected proportion</u> of incorrectly rejected null out of the rejected	q	Not "too permissive"high-power

Coefficient $\left(\sim t_{df}^{2} \right)$	P value	α=0.05 (0.16=AIC)	Bonferroni (FWE)	BH – (FDR at $q \cdot \frac{m}{m}$) Adaptive	- Step down
		Over fitting	Low power	More power	
$\left(\frac{\hat{\beta}_{(1)}}{SE\left(\hat{\beta}_{(1)}\right)}\right)^{2}$ (Largest)	P ₍₁₎ (Smallest)	α	$\frac{\alpha}{m}$	$q\frac{1}{m}$	
$\left(\frac{\hat{\beta}_{(2)}}{SE\left(\hat{\beta}_{(2)}\right)}\right)^{2}$	<i>P</i> ₍₂₎	α	$\frac{\alpha}{m}$	$q\frac{2}{m}$	
$\frac{\left(\frac{\hat{\beta}_{(i)}}{SE\left(\hat{\beta}_{(i)}\right)}\right)^{2}}{\left(\frac{\hat{\beta}_{(i)}}{SE\left(\hat{\beta}_{(i)}\right)}\right)^{2}}$	$P_{(i)}$	α	$\frac{\alpha}{m}$	$q\frac{i}{m}$	
•••					
$\left(\frac{\hat{\beta}_{(m)}}{SE\left(\hat{\beta}_{(m)}\right)}\right)^{2}$ (Smallest)	$P_{(m)}$ (Largest)	α	$\frac{\alpha}{m}$	$q \frac{m}{m} = \alpha$	

Theoretical motivation – results

The minimax properties of the BH procedure were proved (in ABDJ 2006*) *asymptotically* for:

- large *m*,
- orthogonal variables,
- for <u>sparse</u> signals.

<and >

 $\langle and \rangle$

*ABRAMOVICH, F., BENJAMINI, Y., DONOHO, D. and JOHNSTONE, I. (2006). Adapting to unknown sparsity by controlling the false discovery rate. *Ann. Statist.*

Coefficient $\left(\sim t^2 \right)$	P value	α=0.05	Bonferroni	BH – (FDR at $q \cdot \frac{m_b}{m}$)	Adaptive BH – (FDR at level q)
		(0.16=AIC)	(FWE)	Adaptive	- Step down
		Over fitting	Low power	More power	More power for <u>richer</u> models
$\left(\frac{\hat{\beta}_{(1)}}{SE\left(\hat{\beta}_{(1)}\right)}\right)^{2}$ (Largest)	P ₍₁₎ (Smallest)			$q\frac{1}{m}$	$q\frac{1}{m+1-1(1-q)}$
$\left(\frac{\hat{\beta}_{(2)}}{SE\left(\hat{\beta}_{(2)}\right)}\right)^{2}$	<i>P</i> ₍₂₎			$q\frac{2}{m}$	$q\frac{2}{m+1-2(1-q)}$
$\frac{\left(\frac{\hat{\beta}_{(i)}}{SE\left(\hat{\beta}_{(i)}\right)}\right)^{2}}{\left(\frac{\hat{\beta}_{(i)}}{SE\left(\hat{\beta}_{(i)}\right)}\right)^{2}}$	$P_{(i)}$			$q\frac{i}{m}$	$q \frac{i}{m+1-i(1-q)}$
$\left(\frac{\hat{\beta}_{(m)}}{SE\left(\hat{\beta}_{(m)}\right)}\right)^{2}$	$P_{(m)}$			$q\frac{m}{m} = \alpha$	$q \frac{m}{m+1-m(1-q)}$
(Smallest)	(Largest)				

Forward-selection - Multiple stage FDR: (a.k.a: MSFDR)

- 1. Fit Empty model
- Find the "best" variables (xi*) to enter (with the smallest P value)

3. Is this true ?
$$P_i < \alpha = \frac{q}{2} \bullet \frac{i}{m+1-i(1-q)}$$

- 1. Yes Enter X*i* and repeat (step 2)
- 2. No Finish.

R implementation - stepAIC

```
MSFDR <- function( minimal.lm, maximal.lm , FDR.q = 0.05) { # assumes intercept</pre>
```

```
compute.Lambda <-function(k, m, Q = 0.05) { i <- c(1:k)
return( (1/(k + 1)) * # +1 because penalty function in stepAIC is different
sum(qnorm ((Q/2) * ( i/ (m+1-i*(1-Q)) ) )^2 ) }
```

```
require(MASS);
the.scope <- list(lower = minimal.lm, upper = maximal.lm)
m <- get.model.size(maximal.lm)
new.model.size <- get.model.size(minimal.lm)</pre>
```

```
for(i in 1:m)
{
    old.model.size <- new.model.size
    Lambda <- compute.Lambda(k = old.model.size + 1 , m, Q = FDR.q)
    new.model <- stepAIC(minimal.lm, direction="forward", scope=the.scope , k = Lambda, trace = F)
    new.model.size <- get.model.size(new.model);
    if(new.model.size <= old.model.size) break;
}
fit1 <- MSFDR( minimal.lm = lm.1, maximal.lm = lm.m, FDR.q = 0.05)</pre>
```

```
summary(fit1)
```

Modeling the diabetes data (Efron et al., 2004)

- *n*=442 diabetes patients.
- m = 64 (10 baseline variables

with 45 paired and 9 squared interactions).

• Y - disease progression (a year after baseline)

Modeling the diabetes data (Efron et al., 2004)

Factor	t_{df}^2	P-value		P-to-enter	$\lambda_{k,m}$	R ² (adj)
la .e.a :	000 74	0 000000		0 000701	11.00	0.040
DITII	230.74	0.000000	F	0.000781	11.29	0.342
ltg	93.86	0.000000		0.001585	10.63	0.457
map	17.36	0.000037		0.002414	10.16	0.477
age.sex	13.56	0.000259		0.003268	9.78	0.491
bmi.map	9.60	0.002076	-	0.004149	9.47	0.501
hdl	9.00	0.002859		0.005059	9.20	0.510
sex	16.23	0.000066		0.005998	8.96	0.527
glu.2	5.75	0.016920		0.006969	8.75	0.531
age.2	2.58	0.109060		0.007972	8.56	0.533

Modeling the diabetes data (Efron et al., 2004)

Method	Number of variables	R^2
MS_FDR (q=.05), BIC, universal-threshold	7	0.53
AIC	9	0.54
LARS (with Cp)	_ 16	0.55
Over fitting		

Simulation - configurations

$$Y_i = X_i \beta + \varepsilon_i$$

- •7 penalty based model selection procedures
- m = 20, 40, 80, 160, Ratio: n = 2*m
- proportion of non-zero $\beta = \sqrt{m}, \frac{m}{4}, \frac{m}{3}, \frac{m}{2}, \frac{3m}{4}, m$
- Dependencies in X: $N(0, \Sigma_{m \times m}); \quad \Sigma_{m \times m} = \left[\rho^{|i-j|}\right]$ $\rho = 0.5, 0, -0.5$
- $\beta = 1$ constant (*with* $R^2 = 0.75$), 2 rates of decrease (in one minimal β is constant)
- Computation avg MSPE over 1000 runs
- done on 80 computers (distributed computing)

Simulation – Comparison methodology

1) Compute the ratio:

(For each model)

$$\frac{MSPE}{MSPE}_{\text{random oracle}}$$

Random Oracle = the "best" model we could

find on our search path

2) For each procedure

Over all simulation configuration

find the worst ratio – and compare them

Simulation – results

Comparing the minimax between procedure

TABLE 2

The maximal relative loss (MSPE of method divided by MSPE of the random oracle). Bold figures indicate the minimax relative loss (or to within one simulation standard error). Simulation standard errors are given in parentheses

Procedure	m = 20	m = 40	m = 80	m = 160
FWD	2.80 (0.068)	2.87 (0.061)	2.84 (0.043)	3.59 (0.098)
Ср	4.77 (0.096)	4.87 (0.096)	4.88 (0.069)	6.88 (0.193)
DJ	2.34 (0.022)	2.78 (0.021)	3.05 (0.016)	2.58 (0.010)
BM	4.47 (0.064)	5.15 (0.106)	6.61 (0.137)	5.09 (0.110)
FS	3.07 (0.097)	3.62 (0.090)	3.35 (0.059)	3.35 (0.068)
ТК	1.66 (0.028)	1.71 (0.015)	1.72 (0.010)	1.99 (0.010)
MSFDR 0.05	1.47 (0.031)	1.72 (0.012)	1.77 (0.010)	1.79 (0.008)

•forward selection procedure

•Cp

•the universal threshold in Donoho and Johnstone (1994)

•Birgé and Massart (2001)

•Foster and Stine (2004)

•Tibshirani and Knight (1999)

•multiple-stage procedure in Benjamini, Krieger and Yekutieli (2006) and Gavrilov, Benjamini and Sarkar (2009)—MSFDR

<u>R</u> implementation – biglm + leaps</u>

```
MSFDR.biglm <- function(biglm.obj)</pre>
```

```
list.of.penalty.lambda <- function(model.size, FDR.q.level = 0.05)
{ compute.Lambda <-function(k, m, FDR.q) # k = size of model, m = maximum size of model
        { from.1.to.k <- c(1:k)
        return((1/k) * sum( qnorm ((FDR.q/2)* from.1.to.k/(m+1-from.1.to.k*(1-FDR.q)) ) ^ 2 ) ) }
sapply(c(1:model.size),function(x) {compute.Lambda(k = x, m = model.size, FDR.q = FDR.q.level)})}</pre>
```

```
the.FS.FDR.model.to.use <- function(obj)
{ # gives me the first model that has penaltiy RSS that is local minimum
    penalized.rss.diff <- diff(penalized.rss(aa))
    c(1:length(penalized.rss.diff))[diff(penalized.rss(aa)) > 0][1] }
```

```
require(leaps)
m <- length(biglm.obj$names) - 1
regsubsets.obj <- regsubsets(biglm.obj, method = "forward", nvmax = m+1, intercept=TRUE)
variables.of.our.model <- the.FS.FDR.model.to.use(regsubsets.obj) # tells us which model to use
summary(regsubsets.obj)$which[variables.of.our.model,] # vector of T/F indicators</pre>
```

MSFDR.biglm(biglm.fit) # return the names of the variables in the final model

Future research

- Beyond Linear regression? (logistic and more)
- Beyond forward selection? (Mixed with Lasso and more)
- More variables then observation? (m>n)

Tel Aviv University

Based on the paper by YOAV BENJAMINI and YULIA GAVRILOV "A SIMPLE FORWARD SELECTION PROCEDURE BASED ON FALSE DISCOVERY RATE CONTROL"

(Annals of Applied Statistics 2009)

www.R-Statistics.com

Tal.Galili@gmail.com

Thank you!

Questions?

Simulation – Comparison methodology

Challenge (1): Path performance depends on <u>simulation</u>

```
(while exhaustive search over all subsets – impossible!)
```

What do we compare to ?

Solution (1): a "random oracle"

1)Find the "best" model on the forward path of nested models

<u>Example</u>: for the path: *X*7, *X*20, *X*5, *X*9 ...

The possible subsets are: $\{X7\}, \{X7, X20\}, \{X7, X20, X5\}$...

2)Compare current models with random oracle

 $\frac{MSPE}{MSPE}_{\text{random oracle}}$

Simulation – Comparison methodology

<u>Challenge (2)</u>: MSPE changes per <u>configuration</u>, so how do we compare algorithms?

<u>Solution (2)</u>: search for "empirical minimax performance" – find the minimum across "maximum relative MSPE over the configurations"

Simulation – conclusions

		BH	TSFDR	MSFDR
m = 20 and 40	$\rho = -0.5$	0.05	0.05	0.05
	$\rho = 0$	0.05	0.05	0.05
	$\rho = 0.5$	0.05	0.05	0.05
	any ρ	0.05	0.05	0.05
m = 80	$\rho = -0.5$	0.1	0.1	0.1
	$\rho = 0$	0.1	0.05	0.05
	$\rho = 0.5$	0.1	0.05	0.05
	any ρ	0.1	0.1	0.05
m = 160	$\rho = -0.5$	0.25	0.25	0.25/0.1
	$\rho = 0$	0.1	0.1	0.05
	$\rho = 0.5$	0.1	0.1	0.1
	any ρ	0.1	0.1	0.05

TABLE 1The preferable values of q for the FDR procedures studied

Simulation – results (extended)

TABLE 3

Mean relative MSPE values for the k least-favorable configurations, k = 2, 3, *ALL. The case for k* = 1 *is in Table* 2

		m = 20)		m = 40)		m = 80)	1	m = 16	0
k Procedure	2	3	ALL									
FWD	2.80	2.62	1.48	2.69	2.62	1.46	2.77	2.52	1.37	3.55	3.54	1.54
Ср	4.71	4.28	1.82	4.58	4.42	1.80	4.75	4.32	1.69	6.73	6.58	2.07
DJ	2.30	2.25	1.36	2.60	2.53	1.44	2.91	2.82	1.47	2.51	2.47	1.46
BM	4.39	4.20	2.03	4.77	4.63	2.41	5.55	5.06	2.35	4.81	4.44	2.30
FS	3.07	3.06	1.77	3.49	3.42	1.57	3.26	2.97	1.33	2.79	2.57	1.24
ТК	1.64	1.63	1.30	1.66	1.60	1.23	1.67	1.61	1.19	1.86	1.81	1.23
MSFDR 0.05	1.46	1.45	1.27	1.63	1.60	1.25	1.72	1.67	1.21	1.79	1.78	1.21

	Paper	Studied	Correlation	Number of	Number of	Coefficients
		estimators	Structure	observations	potential	
			$Corr(X_i, X_j)$		explanatory	
					variables	
	Yuan,	FES, OLS,	$\rho^{ i-j }$,	20 and 50	8, 20	(3, 1.5, 0, 0, 2, 0, 0, 0),
	Ekici,Lu	CW, RRR,	$\rho = 0.5$			(5,0,0,0,0,0,0,0),
.	and Monteiro	PLS, PCR,				10 ones and 10 zeros
	(2007)	RR, CAIC				
	Bunea,	AIC, BIC,	Independent	200 and	5	(10,0.1,0,0.25,0,0.05)
	Niu and	FDR	covariates	500		
	Wegkamp					
)	(2003)					
	Tibshirani	AIC, CIC(TK)	$\rho^{ i-j }$	50 and	21	2, 6 and 10 non-zero
	and Knight	and conditional	$\rho = 0.7$	150		coefficients such
	(1999)	bootstrap				that theoretical $R^2=0.75$
	Brieman	Cp and	$\rho^{ i-j }$	60, 160	40	3, 9, 15 and 21
	(1992)	bootstrap	$\rho = 0.7$	and 600		non-zero constant
						coefficients such
						that theoretical $R^2=0.75$
	Ye (2002)	AIC, BIC,	$\rho^{ i-j }$	200	50	0,5,10,50 non-zero
		RIC and Ye's	$\rho = -0.5$,			constant coefficients
		adaptive	$\rho = 0,$			such that theoretical
		procedure	$\rho = 0.5$			$R^2 = 0.75$
	Zou and	Lasso,Ridge	$\rho^{ i-j }$	20 and	8	(3, 1.5, 0, 0, 2, 0, 0, 0),
	Hastie	regression,	$\rho = 0.5$	200		constant coefficients
	(2005)	Elastic net				equal to 0.85
			0.5	100 and	40	20 non-zero
				400		constant coefficients
	Fan and Li	Lasso, Ridge	$\rho^{ i-j }$	40 and	3	(3,1.5,0,0,2,0,0,0)
	(2001)	regression,Best	$\rho = 0.5$	60		
		subset SCAD				
	Tibshiani	Least squares,	$\rho^{ i-j }$	20	8	(3, 1.5, 0, 0, 2, 0, 0, 0)
	(1996)	Lasso, Ridge	$\rho = 0.5$			constant coefficients
		regression,				equal to 0.85
		Best subset	0.5	100	40	20 non-zero
						constant coefficients
	George and	AIC, BIC,	$\rho^{ i-j }$	200	50	0,5,10,50 non-zero
	Foster	RIC, GF	$\rho = -0.5,0$			constant coefficients
	(1997)		and 0.5			such that theoretical

The selection procedures and configurations studied by various authors.

Earlier studies limitations

1)<u>Constant</u> coefficients (mostly) 2)Largest <u>m</u> = 50 3)<u>NOT Compared</u> to other non-constant adaptive penalties

For orthogonal X matrix:

$$X'X = nI \rightarrow \hat{\beta} = \left(\hat{\beta}_1, \dots, \hat{\beta}_m\right)' = n^{-1}X'y$$

The difference of each step is of the standardized coefficient, since:

$$\frac{RSS_{k-1} - RSS_k}{\sigma^2} = \frac{RSS_{k-1} - \left(RSS_{k-1} - \hat{\beta}_k^2 \sum_{i=1}^n x_{ki}^2\right)}{\sigma^2} = \frac{n\hat{\beta}_k^2}{\sigma^2} = \left(\frac{\hat{\beta}_k}{SE(\hat{\beta}_k)}\right)^2$$

Forward selection is <u>like sorting the P-values</u> and then keeping only who ever is smaller then α :

$$RSS_{k} + \sigma^{2} \sum_{\substack{i=1 \\ z_{\alpha/2}^{2} + \sum_{i=1}^{k-1} z_{\alpha/2}^{2}}}^{k} \leq RSS_{k-1} + \sigma^{2} \sum_{i=1}^{k-1} z_{\alpha/2}^{2}$$

So on which P should we stop ? $\alpha = 0.05$?

What this is NOT:

- 1. Fit full model then check the P values
- 2. Fit m "small" models then check the P values

Correction for multiple testing

	# declared non-significant	# declared significant	Total
# true null hypotheses	U	V	<i>m</i> ₀
# non-true null hypotheses	Т	S	$m - m_0$
Total	m-R	R	m

 $FWE: P(V \ge 1) < \alpha \qquad \text{Very control Low power of } Very control Low power of } Very control Low power of PDR: E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of } Very control Low power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of } Very control Low power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of } Very control Low power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] < q \qquad \text{Different More power of PDR = E\left[\frac{V}{R}\right] <$

Very conservative, Low power

Different objective, More power