use R. using R for

 regression model selection with adaptive penalties procedures based on the FDR criteria"Tal Galili
Tel Aviv University

Based on the paper by YOAV BENJAMINI and YULIA GAVRILOV
"A SIMPLE FORWARD SELECTION PROCEDURE BASED ON FALSE DISCOVERY RATE CONTROL"
(Annals of Applied Statistics 2009)

$$
\begin{aligned}
& X=\left(x_{1}, \ldots, x_{m}\right) \text { is an } n \times m \text { matrix } \\
& \beta=\left(\beta_{1}, \ldots, \beta_{m}\right) \quad \text { (Some Zeros) } \\
& \varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right) \sim N\left(0, \sigma^{2} I\right)
\end{aligned}
$$

Task: Stopping rule (finding the "Best model" on the Forward selection path)

Why forward selection?

Motivation - Big (m) datasets:

1) Fast results

- Simple models
- Simple procedure

2) Good results
3) Easy to use

How to choose λ ?

λ type	examples	for "big" models
constant λ	- $\lambda_{a}=2 \quad$ (AIC)	-Over fitting
Non-constant (adaptive) λ	- $\lambda_{n}=\log (n)$ (BIC) - $\lambda m=2 \log (m)$ (niniveral: imexatale) - $\lambda_{k, m}=$?	-Better results - Faster then bootstraping.

Minimize

$$
R S S_{k}+\sigma^{2} k \lambda
$$

Multiple Step FDR (MSFDR) Adaptive Penalty

$$
\begin{aligned}
\lambda_{k, m} & \left.=\frac{1}{k} \sum_{i=1}^{k} z_{\left[\frac{q}{2}\right.}^{2}\left(\frac{i}{m+1-(1-q)}\right)\right] \\
R S S_{k} & +\sigma^{2} k \lambda
\end{aligned}
$$

Model selection multiple testing
 $$
\underbrace{\left(\beta_{1} \stackrel{?}{=} 0, \ldots, \stackrel{?}{i}_{i}^{=} 0, \ldots, \beta_{m} \stackrel{?}{=} 0\right)}_{\left(H_{0,1}, \ldots, H_{0, i}, \ldots, H_{0, m}\right)}
$$

Orthogonal X matrix => non changing, coefficients "at once":

$$
X^{\prime} X=n I \rightarrow \hat{\beta}=\left(\hat{\beta}_{1}, \ldots, \hat{\beta}_{m}\right)^{\prime}=n^{-1} X^{\prime} y
$$

Keeping (Beta) P-values which are bellow $\alpha \Leftrightarrow$ forward selection

But how should we adjust for multiplicity of the many tests?

How to adjust for multiplicity?

Approach	Principle	keeping	properties
FWE (familywise error rate)	Keeping the probability of making one or more false discoveries.	α	•Conservative •Low-power
FDR (False discovery rate)	Controlling the expected proportion of incorrectly rejected null out of the rejected	q	-Not "too permissive" -high-power

Theoretical motivation - results

The minimax properties of the BH procedure were proved (in ABDJ 2006*) asymptotically for:

- large m,
<and >
- orthogonal variables,
<and >
- for sparse signals.

[^0]

Forward-selection - Multiple stage FDR:
 (a.k.a: MSFDR)

1. Fit Empty model
2. Find the "best" variables ($\mathrm{xi}^{\text {i }}$) to enter (with the smallest P value)
3. Is this true ? $P_{i}<\alpha=\frac{q}{2} \cdot \frac{i}{m+1-i(1-q)}$
4. Yes - Enter Xi and repeat (step 2)
5. No - Finish.

R implementation - stepAIC

```
MSFDR <- function( minimal.lm, maximal.lm, FDR.q = 0.05) { # assumes intercept
compute.Lambda <-function(k, m, Q = 0.05) { i <- c(1:k)
    return( (1/(k + 1)) * # +1 because penalty function in stepAIC is different
        sum(qnorm ((Q/2) * ( i/ (m+1-i*(1-Q)) ) )^2 ) ) }
get.model.size <- function(a.lm) { require(MASS);
                        return(extractAIC(a.lm)[1]-1) } # without intercept
```

```
require (MASS);
```

require (MASS);
the.scope <- list(lower = minimal.lm, upper = maximal.lm)
the.scope <- list(lower = minimal.lm, upper = maximal.lm)
m <- get.model.size(maximal.lm)
m <- get.model.size(maximal.lm)
new.model.size <- get.model.size(minimal.lm)
new.model.size <- get.model.size(minimal.lm)
for(i in 1:m)
for(i in 1:m)
{
{
old.model.size <- new.model.size
old.model.size <- new.model.size
Lambda <- compute.Lambda(k = old.model.size + 1 , m, Q = FDR.q)
Lambda <- compute.Lambda(k = old.model.size + 1 , m, Q = FDR.q)
new.model <- stepAIC(minimal.lm, direction="forward", scope=the.scope , k = Lambda, trace = F)
new.model <- stepAIC(minimal.lm, direction="forward", scope=the.scope , k = Lambda, trace = F)
new.model.size <- get.model.size(new.model);
new.model.size <- get.model.size(new.model);
if(new.model.size <= old.model.size) break;
if(new.model.size <= old.model.size) break;
}
}
return(new.lm) }
return(new.lm) }
fit1 <- MSFDR(minimal.lm = lm.1, maximal.lm = lm.m, FDR.q = 0.05)
summary(fit1)

```

\section*{Modeling the diabetes data (Efron et al., 2004)}
- \(n=442\) diabetes patients.
- \(m=64\) (10 baseline variables
\[
\text { with } 45 \text { paired and } 9 \text { squared interactions ). }
\]
- Y - disease progression (a year after baseline)

\section*{Modeling the diabetes data (Efron et al., 2004)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Factor & \(t_{d f}^{2}\) & P-value & P-to-enter & \(\lambda_{k, m}\) & \(R^{2}{ }_{(a d j)}\) \\
\hline bmi & 230.74 & 0.000000 & 0.000781 & 11.29 & 0.342 \\
\hline Itg & 93.86 & 0.000000 & 0.001585 & 10.63 & 0.457 \\
\hline map & 17.36 & 0.000037 & 0.002414 & 10.16 & 0.477 \\
\hline age.sex & 13.56 & 0.000259 & 0.003268 & 9.78 & 0.491 \\
\hline bmi.map & 9.60 & 0.002076 & 0.004149 & 9.47 & 0.501 \\
\hline hdl & 9.00 & 0.002859 & 0.005059 & 9.20 & 0.510 \\
\hline sex & 16.23 & 0.000066 & 0.005998 & 8.96 & 0.527 \\
\hline glu. 2 & 5.75 & 0.016920 & 0.006969 & 8.75 & 0.531 \\
\hline age. 2 & 2.58 & 0.109060 & 0.007972 & 8.56 & 0.533 \\
\hline
\end{tabular}

\section*{Modeling the diabetes data (Efron et al., 2004)}


\section*{Simulation - configurations}
\[
Y_{i}=X_{i} \beta+\varepsilon_{i}
\]
-7 penalty based model selection procedures
- \(\mathrm{m}=20,40,80,160, \quad\) Ratio: \(\mathrm{n}=2 * \mathrm{~m}\)
- proportion of non-zero \(\beta=\sqrt{\mathrm{m}}, \mathrm{m} / 4, \mathrm{~m} / 3, \mathrm{~m} / 2,3 \mathrm{~m} / 4, m\)
- Dependencies in X: \(\quad N\left(0, \Sigma_{m \times m}\right) ; \quad \Sigma_{m \times m}=\left[\rho^{i-j i}\right]\)
\[
\rho=0.5,0,-0.5
\]
- \(\beta=1\) constant ( with \(R^{2}=0.75\) ), 2 rates of decrease (in one minimal \(\beta\) is constant)
- Computation - avg MSPE over 1000 runs
- done on 80 computers (distributed computing)

\section*{Simulation - Comparison methodology}
1) Compute the ratio:
(For each model)

Random Oracle = the "best" model we could
find on our search path
2) For each procedure

Over all simulation configuration
find the worst ratio - and compare them

\section*{Simulation - results}

\section*{Comparing the minimax between procedure}

TABLE 2
The maximal relative loss (MSPE of method divided by MSPE of the random oracle). Bold figures indicate the minimax relative loss (or to within one simulation standard error). Simulation standard errors are given in parentheses
\begin{tabular}{lcccc}
\hline Procedure & \(\boldsymbol{m}=\mathbf{2 0}\) & \(\boldsymbol{m}=\mathbf{4 0}\) & \(\boldsymbol{m}=\mathbf{8 0}\) & \(\boldsymbol{m}=\mathbf{1 6 0}\) \\
\hline FWD & \(2.80(0.068)\) & \(2.87(0.061)\) & \(2.84(0.043)\) & \(3.59(0.098)\) \\
Cp & \(4.77(0.096)\) & \(4.87(0.096)\) & \(4.88(0.069)\) & \(6.88(0.193)\) \\
DJ & \(2.34(0.022)\) & \(2.78(0.021)\) & \(3.05(0.016)\) & \(2.58(0.010)\) \\
BM & \(4.47(0.064)\) & \(5.15(0.106)\) & \(6.61(0.137)\) & \(5.09(0.110)\) \\
FS & \(3.07(0.097)\) & \(3.62(0.090)\) & \(3.35(0.059)\) & \(3.35(0.068)\) \\
TK & \(1.66(0.028)\) & \(\mathbf{1 . 7 1}(0.015)\) & \(\mathbf{1 . 7 2}(0.010)\) & \(1.99(0.010)\) \\
MSFDR 0.05 & \(\mathbf{1 . 4 7}(0.031)\) & \(\mathbf{1 . 7 2}(0.012)\) & \(1.77(0.010)\) & \(\mathbf{1 . 7 9}(0.008)\) \\
\hline
\end{tabular}
-forward selection procedure
-Cp
-the universal threshold in Donoho and Johnstone (1994)
-Birgé and Massart (2001)
-Foster and Stine (2004)
-Tibshirani and Knight (1999)
-multiple-stage procedure in Benjamini, Krieger and Yekutieli (2006) and Gavrilov, Benjamini and Sarkar (2009)—MSFDR

\section*{R implementation - biglm + leaps}
```

MSFDR.biglm <- function(biglm.obj)
{
list.of.penalty.lambda <- function(model.size, FDR.q.level = 0.05)
{ compute.Lambda <-function(k, m, FDR.q) \# k = size of model, m = maximum size of model
{ from.1.to.k <- c(1:k)
return((1/k) * sum(qnorm ((FDR.q/2)* from.1.to.k/(m+1-from.1.to.k*(1-FDR.q))) 人 2)) }
sapply(c(1:model.size),function(x) {compute.Lambda(k = x, m = model.size, FDR.q = FDR.q.level)})}
penalized.rss <- function(obj) \# get a regsubsets object
{ m <- obj$np-1
 lambda.k <- list.of.penalty.lambda(m)
 sigma2 <- obj$sserr/(obj$nn - obj$last)
\# = RSS_full_model / (number_of_obs - model_size_for_biggest_model) = sigma^2
k <- c(1:m)
rss <- obj$rss[-1] # RSS, without the first model with the intercept only
 return(penalized.rss.result <- rss + sigma2 * k * lambda.k) }
 the.FS.FDR.model.to.use <- function(obj)
 { # gives me the first model that has penaltiy RSS that is local minimum
 penalized.rss.diff <- diff(penalized.rss(aa))
 c(1:length(penalized.rss.diff))[diff(penalized.rss(aa)) > 0][1] }
 require (leaps)
 m<- length(biglm.obj$names) - 1
regsubsets.obj <- regsubsets (biglm.obj, method = "forward", nvmax = m+1, intercept=TRUE)
variables.of.our.model <- the.FS.FDR.model.to.use(regsubsets.obj) \# tells us which model to use
summary(regsubsets.obj)\$which[variables.of.our.model,] \# vector of T/F indicators
}

Future research

- Beyond Linear regression? (logistic and more)
- Beyond forward selection? (Mixed with Lasso and more)
- More variables then observation? $(\mathrm{m}>\mathrm{n})$

Tel Aviv University

Based on the paper by YOAV BENJAMINI and YULIA GAVRILOV
"A SIMPLE FORWARD SELECTION PROCEDURE BASED ON FALSE DISCOVERY RATE CONTROL"
(Annals of Applied Statistics 2009)

www.R-Statistics.com

Tal.Galili@gmail.com
 Thank you!

Questions?

Simulation - Comparison methodology

Challenge (1): Path performance depends on simulation
(while exhaustive search over all subsets - impossible!)
What do we compare to ?
Solution (1): a "random oracle"
1)Find the "best" model on the forward path of nested models

Example: for the path: $X 7, X 20, X 5, X 9 \ldots$
The possible subsets are: $\{X 7\},\{X 7, X 20\},\{X 7, X 20, X 5\} \ldots$
2)Compare current models with random oracle

$$
\frac{M S P E_{\text {model }}}{M S P E_{\text {random oracle }}}
$$

Simulation - Comparison methodology

Challenge (2): MSPE changes per configuration, so how do we compare algorithms?

Solution (2): search for "empirical minimax performance" find the minimum across "maximum relative MSPE over the configurations"

$\underline{\text { Simulation - conclusions }}$

TABLE 1
The preferable values of q for the FDR procedures studied

		BH	TSFDR	MSFDR
$m=20$ and 40	$\rho=-0.5$	0.05	0.05	0.05
	$\rho=0$	0.05	0.05	0.05
$m=80$	$\rho=0.5$	0.05	0.05	0.05
	any ρ	0.05	0.05	0.05
$m=160$	$\rho=-0.5$	0.1	0.1	0.1
	$\rho=0$	0.1	0.05	0.05
	$\rho=0.5$	0.1	0.05	0.05
	any ρ	0.1	0.1	0.05
	$\rho=-0.5$	0.25	0.25	$0.25 / 0.1$
	$\rho=0$	0.1	0.1	0.05
	$\rho=0.5$	0.1	0.1	0.1
	any ρ	0.1	0.1	0.05

$\underline{\text { Simulation - results (extended) }}$

TABLE 3
Mean relative MSPE values for the k least-favorable configurations, $k=2,3, A L L$.
The case for $k=1$ is in Table 2

	$m=20$			$m=40$			$m=80$			$m=160$		
k Procedure	2	3	ALL									
FWD	2.80	2.62	1.48	2.69	2.62	1.46	2.77	2.52	1.37	3.55	3.54	1.54
Cp	4.71	4.28	1.82	4.58	4.42	1.80	4.75	4.32	1.69	6.73	6.58	2.07
DJ	2.30	2.25	1.36	2.60	2.53	1.44	2.91	2.82	1.47	2.51	2.47	1.46
BM	4.39	4.20	2.03	4.77	4.63	2.41	5.55	5.06	2.35	4.81	4.44	2.30
FS	3.07	3.06	1.77	3.49	3.42	1.57	3.26	2.97	1.33	2.79	2.57	1.24
TK	1.64	1.63	1.30	1.66	1.60	1.23	1.67	1.61	1.19	1.86	1.81	1.23
MSFDR 0.05	1.46	1.45	1.27	1.63	1.60	1.25	1.72	1.67	1.21	1.79	1.78	1.21

The selection procedures and configurations studied by various authors.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Earlier studies limitations:} \& Paper \& Studied estimators \& \begin{tabular}{l}
Correlation \\
Structure \\
\(\operatorname{Corr}\left(X_{i}, X_{j}\right)\)
\end{tabular} \& Number of observations \& Number of potential explanatory variables \& Coefficients \\
\hline \& Yuan, Ekici,Lu and Monteiro (2007) \& FES, OLS, CW, RRR, PLS, PCR, RR, CAIC \& \[
\begin{aligned}
\& \rho^{[i-3 \mid}, \\
\& \rho=0.5
\end{aligned}
\] \& 20 and 50 \& 8, 20 \& \[
\begin{aligned}
\& (3,1.5,0,0,2,0,0,0), \\
\& (5,0,0,0,0,0,0,0), \\
\& 10 \text { ones and } 10 \text { zeros }
\end{aligned}
\] \\
\hline 1)Constant coefficients (mostly) \& Bunea, Niu and Wegkamp (2003) \& \[
\mathrm{AIC}, \mathrm{BIC},
\]
FDR \& Independent covariates \& \[
\begin{aligned}
\& 200 \text { and } \\
\& 500
\end{aligned}
\] \& 5 \& (10,0.1,0,0.25,0,0.05) \\
\hline \begin{tabular}{l}
2)Largest \(\underline{m}=50\) \\
3)NOT Compared to other
\end{tabular} \& Tibshirani and Knight (1999) \& AIC, CIC(TK) and conditional bootstrap \& \[
\begin{aligned}
\& \rho^{|i-j|} \\
\& \rho=0.7
\end{aligned}
\] \& \[
\begin{aligned}
\& 50 \text { and } \\
\& 150
\end{aligned}
\] \& 21 \& 2, 6 and 10 non-zero coefficients such that theoretical \(R^{2}=0.75\) \\
\hline non-constant adaptive penalties \& Brieman (1992) \& Cp and bootstrap \& \[
\begin{aligned}
\& \rho^{[i-j \mid} \\
\& \rho=0.7
\end{aligned}
\] \& \[
\begin{aligned}
\& 60,160 \\
\& \text { and } 600
\end{aligned}
\] \& 40 \& \[
\begin{aligned}
\& 3,9,15 \text { and } 21 \\
\& \text { non-zero constant } \\
\& \text { coefficients such } \\
\& \text { that theoretical } R^{2}=0.75
\end{aligned}
\] \\
\hline \& Ye (2002) \& AIC, BIC, RIC and Ye's adaptive procedure \& \[
\begin{aligned}
\& \rho^{|i-\eta|} \\
\& \rho=-0.5, \\
\& \rho=0, \\
\& \rho=0.5
\end{aligned}
\] \& 200 \& 50 \& \(0,5,10,50\) non-zero constant coefficients such that theoretical \(R^{2}=0.75\) \\
\hline \& Zou and Hastie (2005) \& Lasso,Ridge regression, Elastic net \& \[
\begin{aligned}
\& \rho^{|i-j|} \\
\& \rho=0.5
\end{aligned}
\] \& \[
\begin{aligned}
\& 20 \text { and } \\
\& 200
\end{aligned}
\] \& 8 \& (3,1.5,0,0,2,0,0,0), constant coefficients equal to 0.85 \\
\hline \& \& \& 0.5 \& \[
100 \text { and }
\]
\[
400
\] \& 40 \& 20 non-zero constant coefficients \\
\hline \& \[
\begin{aligned}
\& \text { Fan and } \mathrm{Li} \\
\& (2001)
\end{aligned}
\] \& Lasso, Ridge regression,Best subset SCAD \& \[
\begin{aligned}
\& \rho^{|i-j|} \\
\& \rho=0.5
\end{aligned}
\] \& \[
\begin{aligned}
\& 40 \text { and } \\
\& 60
\end{aligned}
\] \& 3 \& (3,1.5,0,0,2,0,0,0) \\
\hline \& \[
\begin{aligned}
\& \text { Tibshiani } \\
\& (1996)
\end{aligned}
\] \& Least squares, Lasso, Ridge regression, Best subset \& \[
\begin{aligned}
\& \rho^{[i-\jmath \mid} \\
\& \rho=0.5 \\
\& 0.5
\end{aligned}
\] \& \[
\begin{aligned}
\& 20 \\
\& 100
\end{aligned}
\] \& 8

40 \& (3,1.5,0,0,2,0,0,0) constant coefficients equal to 0.85 20 non-zero constant coefficients

\hline \& | George and Foster |
| :--- |
| (1997) | \& AIC, BIC, RIC, GF \& \[

$$
\begin{aligned}
& \rho^{|i-j|} \\
& \rho=-0.5,0 \\
& \text { and } 0.5
\end{aligned}
$$
\] \& 200 \& 50 \& $0,5,10,50$ non-zero constant coefficients such that theoretical

\hline
\end{tabular}

For orthogonal X matrix:

$$
X^{\prime} X=n I \rightarrow \hat{\beta}=\left(\hat{\beta}_{1}, \ldots, \hat{\beta}_{m}\right)^{\prime}=n^{-1} X^{\prime} y
$$

The difference of each step is of the standardized coefficient, since:

$$
\frac{R S S_{k-1}-R S S_{k}}{\sigma^{2}}=\frac{R S S_{k-1}-\left(R S S_{k-1}-\hat{\beta}_{k}^{2} \sum_{i=1}^{n} x_{k i}^{2}\right)}{\sigma^{2}}=\frac{n \hat{\beta}_{k}^{2}}{\sigma^{2}}=\left(\frac{\hat{\beta}_{k}}{\operatorname{SE}\left(\hat{\beta}_{k}\right)}\right)^{2}
$$

Forward selection is like sorting the \mathbf{P}-values and then keeping only who ever is smaller then α :

$$
\begin{aligned}
& R S S_{k}+\sigma^{2} \sum_{\substack{i=1 \\
z_{\alpha / 2}^{2}+\sum_{i=1}^{k=1} z_{\alpha / 2}^{2}}}^{k} z_{\alpha / 2}^{2} \leq R S S_{k-1}+\sigma^{2} \sum_{i=1}^{k-1} z_{\alpha / 2}^{2} \\
& \text { ich P should we stop ? } \alpha=0.05 \text { ? }
\end{aligned}
$$

An adaptive penalty procedure		Adaptive BH (FDR at level q) - Step down
	More power	More power for richer models
$\operatorname{RSS}_{k}+\sigma^{2} \sum_{\substack{i=1}}^{\substack{k \\ z_{\alpha / 2}^{2}+\sum_{i=1}^{2} \sum_{\alpha / 2}^{2}}} \leq R S S_{k-1}+\sigma^{2} \sum_{i=1}^{k-1} z_{\alpha / 2}^{2}$		
With this λ	$q \frac{i}{m}$	$q \frac{i}{m+1-i(1-q)}$
$R S S_{k}+\sigma^{2} \sum_{i=1}^{k} z_{\alpha / 2}^{2}=R S S_{k}+\sigma^{2} k \underbrace{\left(\frac{1}{k} \sum_{i=1}^{k} z_{\alpha / 2}^{2}\right)}$		

What this is NOT:

1. Fit full model - then check the P values
2. Fit m "small" models - then check the P values

Correction for multiple testing

	\# declared non-significant	\# declared significant	Total
\# true null hypotheses	U	V	m_{0}
\# non-true null hypotheses	T	S	$m-m_{0}$
Total	$m-R$	R	m

[^0]: *ABRAMOVICH, F., BENJAMINI, Y., DONOHO, D. and JOHNSTONE, I. (2006).
 Adapting to unknown sparsity by controlling the false discovery rate. Ann. Statist.

