

Estimating Markovian Switching Regression Models in An application to model energy price in Spain

S. Fontdecaba, M. P. Muñoz , J. A. Sànchez*

Department of Statistics and Operations Research Universitat Politècnica de Catalunya - UPC

* josep.a.sanchez@upc.edu

Outline

- 1. Introduction & Objectives
- 2. Methodology
- 3. Application to energy price
- 4. Results
- **5.** Conclusions

1. Introduction

The model we consider is of the MARKOVIAN SWITCHING (MS) type, originally defined by Hamilton (1989).

•MSVAR library - Krolszing (1998) (not available free acces: OX)

•MSVARIb - Bellone (2005) (Less user friendly)

•MSRegression - Perlin (2007) (Libraries in Matlab)

1. Objectives

- 1. Built a set of functions to explain time series according to a Markovian Switching Regression model.
- 2. Resolution of the problems during the estimation of the Markovian Switching models.
- 3. Application of Markovian Switching models in energy price in Spain according to the demand, raw material prices and financial indicators.

2. Markovian Switching

3 Data

4 Results

2. Markovian Switching

S : Number of states

$$P_{i,t} = \begin{cases} \beta_{1,t}^{(1)} X_{1,t} + \dots + \beta_{k,t}^{(1)} X_{k,t} \\ \beta_{2,t}^{(2)} X_{1,t} + \dots + \beta_{k,t}^{(2)} X_{k,t} \\ \beta_{2,t}^{(2)} X_{1,t} + \dots + \beta_{k,t}^{(2)} X_{k,t} \\ \end{pmatrix} + \beta_{k+1,t} X_{k+1,t} + \dots + \beta_{j,t} X_{j,t} + \varepsilon_{t,2} \quad S_t = 2 \end{cases}$$
Variables with switching effect
Variables with switching effect

Parameters of the model to estimate:

Deviations of the states: $(\sigma^{(1)}; \sigma^{(2)})$ Coefficients of the regression with Switching effect: $(\beta_{1,...,k}^{(1)}; \beta_{1,...,k}^{(2)})$ Coefficients of the regression without Switching effect: $(\beta_{k+1,...,}\beta_t)$ Transition probabilities: (p_{11}, p_{22})

Model parameters:

$$\Theta = (\beta, \sigma, \Pi)$$

Model Likelihood:

$$L(\Theta; y_{1:T}, X_{1:T}) = f(y_{1:T} \mid X_{1:T}, \beta, \sigma) =$$
$$\sum_{t=1}^{T} \sum_{S} f(y_t \mid S_t, X_t, \beta, \sigma) P(S_t \mid \Pi)$$

The state S is a non-observable latent variable \rightarrow Likelihood = marginal of the conjoint density for y and S

In this case, the functional dependence between y and X corresponds to a linear model (OLS)

$$y | X, \beta, \sigma \sim N(X\beta, \sigma^2 I)$$

Conditioning on the state S means a different set of parameters for each state.

$$y | S, X, \beta, \sigma \sim N(X\beta^{(S)}, \sigma^{(S)^2}I)$$

Other set-up can be considered:

- Extending predictors → Autoregressive models
- Modifying response distribution Generalized LM
- More complex functional dependence Non-linear models

3. Application – Energy price

3 Data

Electricity markets are characterized by:

- inelasticity of the demand
- impossibility of storage
- Seasonality character: fluctuations of demand due to weather conditions and human habits

In the last decade, the issue of modeling and forecasting prices had been the key question to:

- > determine the causes of price behavior
- Macroeconomic significance of the prices of raw materials. Spain is an importer country

3. Application – Energy price

3 Data

The objective of the application is to identify the influence on the energy price of:

4 Results

5 Conclusions

- the demand
- the price of the raw materials

2 Methodology

financial information of the markets

during different states of its evolution.

1 Introduction & Objectives

2 Methodology 3 Data **1 Introduction & Objectives** 4 Results

5 Conclusions

3. Data

Data from January 1, 2002 to October 31, 2008 (daily data-working days: Monday to Friday)

ENERGY	RAW MATERIALS	FINANCIAL
 Average price of energy (Cent/Kw.h) Daily demand of energy 	 Oil Price (€/barril) Gas Price (€/MW.h) Coal Price (€/T) 	 Exchange Rate between Dolar - Euro (USD-Euro) Ibex 35 Index
	 Price of CO₂ Allowances (€/T) 	
Bierbrauer, Truck and WereAmano and Norden (1998)	on (2006) Zachmann (2007)	

3 Data

1 Introduction & Objectives

2 Methodology

4 Results

4. Estimation Procedure

MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS

$$\theta = \begin{cases} \beta_0, \beta_{Demand}, \beta_{Oil}, \beta_{Gas}, \beta_{Coal}, \beta_{USDE}, \beta_{Ibex} \\ \sigma_s^{(1)}, \sigma_s^{(2)}, p_{11}, p_{22} \end{cases}$$

Number of parameters: 18

Convergence not assured!!

 Markovian Switching Models. An application to model energy price in Spain

 1 Introduction & Objectives
 2 Methodology
 3 Data
 4 Results
 5 Conclusions

4. Results

 $P_{i,t} = \beta_0 + \beta_{Demand,t} + \beta_{Oil,t} + \beta_{Gas,t} + \beta_{Coal,t} + \beta_{USD/E,t} + \beta_{Ibex35,t} + \varepsilon_t$

β	Estim.		Std.Error	
βConst.	-9.046		0.54006***	*
βDemand	-0.0090		0.0004***	
βOil	0.0832		0.0037***	
βGas	0.0420		0.0039***	
βCoal	-0.00819		0.00201	
βUSD/E	6.059		0.3646***	
βlbex35	-0.0001		0.00001***	•
R ² =0.57		O	- =1.06	

4. Estimation Procedure

MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS

2. Non-linear optimization (Newton-Raphson)

Evaluation of the likelihood of the model

→ Function *optim* to find MLE

3. Expectation step for S_t

Calculate the Expectation of S_t under the current estimates of the parameters

EM Alg. ➔ Assign each observation to one of the states

4. Maximization step for parameters

Conditioning on the values for S_t , obtain new estimates

- → Estimate linear model (OLS) for each state
 - → go to step 2 until convergence

3 Data

4 Results

4. Numerical Results

л ($\beta_{0}^{(1)} + \beta_{Demand,t}^{(1)} + \beta_{Oil,t}^{(1)} + \beta_{Gas,t}^{(1)} + \beta_{Coal,t}^{(1)} + \beta_{USD/E,t}^{(1)} + \beta_{Ibex35,t}^{(1)} + \varepsilon_{t}^{(1)}$	$S_t = 1$
$P_{i,t} = $	$\beta_{0}^{(2)} + \beta_{Demand,t}^{(2)} + \beta_{Oil,t}^{(2)} + \beta_{Gas,t}^{(2)} + \beta_{Coal,t}^{(2)} + \beta_{USD/E,t}^{(2)} + \beta_{Ibex35,t}^{(2)} + \varepsilon_{t}^{(1)}$	$S_t = 2$

β	Estim.		Std.Erro	r
βConst.	-9.575		0.6421**	*
βDemand	0.	0115	0.0005**	*
βOil	0.08161		0.0049**	*
βGas	0.02192		0.0049**	*
βCoal	0.00014		0.0021	
βUSD/E	6.219		0.418***	
βlbex35	-0.0008		0.00001**	**
σ=0.842		R ²	=0.66	

β	Estim.		Std.Error	
βConst.	-7.:	3610	0.37515***	۲
βDemand	0.005301		0.0003***	
βOil	0.05371		0.00253***	*
βGas	0.0238		0.0031***	
βCoal	-0.01352		0.00162***	*
βUSD/E	5.1062		0.256***	
βlbex35	-0.00002		0.00009***	۲
σ=0.52	2 R ²		² =0.81	

5 Conclusions

 $P = \begin{bmatrix} 0.98 & 0.05 \\ 0.02 & 0.95 \end{bmatrix}$

3 Data

2 Methodology

4 Results

5 Conclusions

4. Graphical Results

5. Conclusions

- 1. Detection of a model that is not constant over the time
- 2. Implementation of a estimation methodology for Markovian Switching models (2 states) using (
- 3. Relationship between states changes of price and USD-Euro and Ibex35
- 4. State changes in energy price caused by different movements in raw materials price (oil and gas).

5. Future Lines

Work on the routines to be a unique function that allows to the user:

- 1. Reaction time on the market: Introduce some lags information of explanatory variables.
- 2. Autoregressive terms: Introduce previous prices as explanatory variables.
- **3. Orthogonal Model:** Consider the components of PCA and FA as explanatory variables.
- **4. Flexibility of the model:** Check the need of switching effect. Increase the number of states.

References

- Bierbrauer, M., Trück, S., Weron, R., 2003. "*Modeling Electricity Prices* with Regime Switching Models", Phisica A 336, 39-48.
- Goldfeld, S., Quantd, R., 2005. "*A Markov model for switching Regression*", Journal of Econometrics 135, 349-376.
- Hamilton, J., 2005. "*Regime Swtiching Models*", La Jolla CA 92093-0508.
- Perlin, M., 2007. "*Estimation, Simulation and Forecasting of a Markov Switching Regression*", (General case in Matlab).
- Zachmann, G., 2006. "A Markov Switching model of the merit order to compare British and German Price formation", Discussion paper. German Institute for Economics Research

Thank you use ?s!

