



# Novel method for estimating isotope incorporation using the 'half-decimal place rule'



**Ingo Fetzer** 

**Department of Environmental Microbiology** 

userR Conference 2009, Rennes

**HELMHOLTZ** | CENTRE FOR | ENVIRONMENTAL | RESEARCH - UFZ

#### Problem



•Function  $\rightarrow$  Activity  $\rightarrow$  Identitiy

Interactions: Competition Mutualism

HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH - UFZ



## Develop an algorithm for estimating <sup>13</sup>C incorporation by using 'half decimal place rule'



#### 'Half-decimal place rule' (HDPR)

Mann (1995)



#### **Outline**

- 1. Peptide mass calculation for <sup>12</sup>C and <sup>13</sup>C
- 2. Estimation of <sup>12</sup>C and <sup>13</sup>C slopes (HDPR)
- Estimation of relative <sup>13</sup>C incorporation rates (of user data)

implemented in 'R' (R-project.org)

**RESEARCH – UFZ** 

### **Flowchart Script 1**



#### Peptide mass calculation for <sup>12</sup>C and <sup>13</sup>C

#### dataset *M. tuberculosis* H37Rv

| a Data_decimal_places.txt - OpenOffice.org Calc     |          |          |                            |           |                 |                |          |           |           |
|-----------------------------------------------------|----------|----------|----------------------------|-----------|-----------------|----------------|----------|-----------|-----------|
| File Edit View Insert Format Iools Data Window Help |          |          |                            |           |                 |                |          |           |           |
| 1                                                   | - 😕 🖬    | . 🖘 🛙    |                            | ABG 😂     | 🖌 🗞 🛍 • 🎸       | <b>19 •</b> (8 | - 🞯 🤹    | 1 👬 🔟 🥪 🕅 | 1 Ø 🗖 🗑 🥇 |
| . 包                                                 | Arial    |          | ✓ 10                       | ✓ B I     | UEEE            | ■ 田川           | 1 % 8    | 6 👷 💥 🍋 🐳 | 🗆 • 🙇 • 🎽 |
|                                                     |          |          |                            |           |                 |                |          |           |           |
| E6                                                  |          | <u> </u> | $f_{\mathbf{X}} \sum =  2$ | :63       |                 |                |          |           |           |
|                                                     | A        | В        | С                          | D         | E               | F              | G        |           | ~         |
| 1                                                   | Protein  | average  | modification               | ChemScore | missed.cleavage | prev.AA        | sequence | next.AA   |           |
| 2                                                   | 0        | 358.21   | 358.42                     | zero      | 436             | 0              | R        | GPGK      |           |
| 3                                                   | 1        | 390.25   | 390.47                     | zero      | 507             | 1              | R        | SKR       |           |
| 4                                                   | 2        | 402.25   | 402.48                     | zero      | 370             | 0              | R        | NIR       |           |
| 5                                                   | 3        | 405.17   | 405.39                     | zero      | 254             | 0              | R        | DDR       |           |
| 6                                                   | - 4      | 425.21   | 425.47                     | zero      | 263             | 0              | R        | SYR       |           |
| 7                                                   | 5        | 425.26   | 425.51                     | zero      | 79              | 0              | R        | HLR       |           |
| 8                                                   | 6        | 464.29   | 464.59                     | zero      | 259             | 0              | K        | VAFK      |           |
| 9                                                   | 7        | 501.28   | 501.57                     | 1pyroGlu  | 506             | 1              | R        | QRSK      |           |
| 10                                                  | 8        | 518.31   | 518.6                      | zero      | 506             | 1              | R        | QRSK      |           |
| 11                                                  | 9        | 533.27   | 533.57                     | zero      | 255             | 1              | R        | DDRK      |           |
| 12                                                  | 10       | 545.35   | 545.67                     | zero      | 321             | 1              | R        | LRTR      |           |
| 13                                                  | 11       | 572.36   | 572.69                     | zero      | 504             | 1              | R        | IRQR      |           |
| 14                                                  | 12       | 573.32   | 573.67                     | zero      | 392             | 0              | K        | TPIDK     |           |
| 15                                                  | 13       | 581.32   | 581.66                     | zero      | 263             | 1              | K        | RSYR      |           |
| 16                                                  | 14       | 585.41   | 585.77                     | zero      | 343             | 0              | R        | IAILR     |           |
| 17                                                  | 15       | 592.38   | 592.76                     | zero      | 259             | 1              | R        | KVAFK     |           |
| 18                                                  | 16       | 615.36   | 615.71                     | zero      | 438             | 1              | R        | GPGKTR    |           |
| 19                                                  | 17       | 619.34   | 619.7                      | zero      | 500             | 0              | K        | ELTTR     |           |
| 20                                                  | 18       | 620.39   | 620.78                     | zero      | 260             | 1              | K        | VAFKR     |           |
| 21                                                  | 19       | 634.3    | 634.74                     | zero      | 350             | 0              | K        | AQMER     |           |
| 22                                                  | 20       | 645.37   | 645.74                     | zero      | 444             | 0              | R        | ALAQSR    |           |
| 23                                                  | 21       | 650.29   | 650.74                     | 1Met-ox   | 350             | 0              | K        | AQMER     |           |
| 24                                                  | 22       | 713.5    | 713.95                     | zero      | 344             | 1              | R        | IAILRK    |           |
| 25                                                  | 23       | 720.39   | 720.92                     | zero      | 233             | 0              | R        | LFPGMR    |           |
| 26                                                  | 24       | 736.38   | 736.92                     | 1Met-ox   | 233             | 0              | R        | LFPGMR    |           |
| 27                                                  | 25       | 748.41   | 748.87                     | zero      | 468             | 0              | K        | IGQAFGR   |           |
| 28                                                  | 26       | 762.39   | 762.91                     | zero      | 350             | 1              | K        | KAQMER    |           |
| 29                                                  | 27       | 778.39   | 778.91                     | 1Met-ox   | 350             | 1              | K        | KAQMER    |           |
| 30                                                  | 28       | 873.45   | 873.99                     | zero      | 495             | 0              | R        | EVFDHVK   |           |
| 31                                                  | 29       | 884.56   | 885.1                      | zero      | 400             | 0              | K        | ALAEIVLR  |           |
| 32                                                  | 30       | 888.53   | 889.05                     | zero      | 502             | 1              | K        | ELTTRIR   | ×         |
| Meret And       |          |          |                            |           |                 |                |          |           |           |
| Shee                                                | et 1 / 1 | De       | fault                      | 100%      | STD             | *              |          | Sum=263   |           |

Sanger Institute

(ftp://ftp.sanger.ac.uk/pub/tb/sequences/TB.pep)

Virtual digestion with MS-Digest

amino acid sequences length 2 – 40 315,579 peptide fragments

> ChemScore ≥ 10 Missing cleavage = 0 Modifications = Null Mol. weight ≤ 5000 Da

90,637 peptide sequences

#### Peptide mass calculation for <sup>12</sup>C and <sup>13</sup>C

| 🗃 Data_decimal_places.txt - OpenOffice.org Calc                       |         |         |              |           |                 |         |          |         |  |                  |        |   |
|-----------------------------------------------------------------------|---------|---------|--------------|-----------|-----------------|---------|----------|---------|--|------------------|--------|---|
| Eile Edit View Insert Format Tools Data Window Help X                 |         |         |              |           |                 |         |          |         |  |                  | ×      |   |
| ┊◙ • 😕 🖬 ∞ 📝 🗟 🖴 ा% । ॐ 🕾 ) 🖌 🖏 🛍 • 🏈 । ୭ • 🤗 - 🎯 🔧 👪 🔟 2/ Ma ⊘ 💼 🛢 🏅 |         |         |              |           |                 |         |          |         |  | j <mark>*</mark> |        |   |
| Arial 🔽 10 🔽 B / U 🗉 🗉 📰 📰 🖉 % 🐝 🐝 🚑 🥶 🗆 💆 🗸 💙                        |         |         |              |           |                 |         |          |         |  |                  |        |   |
| $E6 \longrightarrow f_x \Sigma = 263$                                 |         |         |              |           |                 |         |          |         |  |                  |        |   |
|                                                                       | A       | В       | C            | D         | E               | F       | G        |         |  |                  |        | ~ |
| 1                                                                     | Protein | average | modification | ChemScore | missed.cleavage | prev.AA | sequence | next.AA |  |                  |        |   |
| 2                                                                     | 0       | 358.21  | 358.42       | zero      | 436             | 0       | R        | GPGK    |  |                  |        |   |
| 3                                                                     | 1       | 390.25  | 390.47       | zero      | 507             | 1       | R        | SKR     |  |                  |        |   |
| 4                                                                     | 2       | 402.25  | 402.48       | zero      | 370             | 0       | R        | NIR     |  |                  |        |   |
| 5                                                                     | 3       | 405.17  | 405.39       | zero      | 254             | 0       | R        | DDR     |  |                  |        |   |
| 6                                                                     | - 4     | 425.21  | 425.47       | zero      | 263             | 0       | R        | SYR     |  |                  |        |   |
| 7                                                                     | 5       | 425.26  | 425.51       | zero      | 79              | 0       | R        | HLR     |  |                  |        |   |
| 8                                                                     | 6       | 464.29  | 464.59       | zero      | 259             | 0       | К        | VAFK    |  |                  |        |   |
| 9                                                                     | 7       | 501.28  | 501.57       | 1pyroGlu  | 506             | 1       | R        | QRSK    |  |                  |        |   |
| 10                                                                    | 8       | 518.31  | 518.6        | zero      | 506             | 1       | R        | QRSK    |  |                  |        |   |
| 11                                                                    | 9       | 533.27  | 533.57       | zero      | 255             | 1       | R        | DDRK    |  |                  |        |   |
| 12                                                                    | 10      | 545.35  | 545.67       | zero      | 321             | 1       | R        | LRTR    |  |                  |        |   |
| 13                                                                    | 11      | 572.36  | 572.69       | zero      | 504             | 1       | R        | IRQR    |  |                  |        |   |
| 14                                                                    | 12      | 573.32  | 573.67       | zero      | 392             | 0       | К        | TPIDK   |  |                  |        |   |
| 15                                                                    | 13      | 581.32  | 581.66       | zero      | 263             | 1       | К        | RSYR    |  |                  |        |   |
| 16                                                                    | 14      | 585.41  | 585.77       | zero      | 343             | 0       | R        | IAILR   |  |                  |        |   |
| 17                                                                    | 15      | 592.38  | 592 76       | 7em       | 259             | 1       | R        | KVAFK   |  |                  | 01 7 7 |   |

HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH – UFZ

## Peptide mass calculation for <sup>12</sup>C and <sup>13</sup>C Script 1:

**1. Reduction of dataset (ChemScore, Modification etc.)** 315.579 90.637 2 a. Peptide mass calculation Sequence + Molecular Sum of formula of in DB C, H, N, O for AA each sequence  $G=C_2H_6NO_2$   $A=C_3H_8NO_2$  $C_7 H_{20} N_3 O_6$ GAG Calculation of percentage <sup>13</sup>C Why? F HELMHOLTZ incorporation ENVIRONMENTAL **RESEARCH – UFZ** 

#### Peptide mass calculation for <sup>12</sup>C and <sup>13</sup>C

#### **2b. Peptide mass calculation**

+

Sum of C, H, N, O of each sequence

 $C_7 H_{20} N_3 O_6$ 

Atomic weights  $^{12}C = 12.000000 Da$   $^{13}C = 13.003355 Da$  N = 14.003074 Da O = 15.994915 DaH = 1.007825 Da Molecular weights of sequences (with decimal residuals)

<sup>12</sup>C=242.135212 Da <sup>13</sup>C=249.158697 Da







Script 2: 1.0 0.8 Decimal residuals 0.6 = m/z - 1800\* Temp 0.4 0.2 0.0 1000 2000 3000 4000 5000 6000 m/z HELMHOLTZ **CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ** 

















#### **User data input**



#### **User data output**



#### **Sensitivity of Method**

Dataset Pseudomonas putida

1. Calculated 50% and 100% <sup>13</sup>C incorporation

 Randomly sampled 100 times each
10-100 (steps by 10), 150, 200, 300, 500, 1000 sequences (0%,50% and 100%)

3. Statistics on estimated incorporation rate for 0%, 50% and 100%

HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH – UFZ

#### **Sensitivity of Method**



### Conclusion



- 1. ,Half-decimal place rule' useful for the estimation of <sup>13</sup>C incorporation rates
- 2. Robust linear models better suited for fitting of highly variable user data than MinSSE fitting
- 3. >100 measurements needed for prescision <5% incorporation estimation

HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH – UFZ



1. Application of HPDR on DNA

2. Backcalculation to <sup>12</sup>C-peaks → function identification



http://www.sharp.co.jp/plasmacluster-tech/en/release/images/041117\_3.gif

3. Include N-isotope incoorporation



#### Acknowledgement

Nico Jemlich (UFZ)

Carsten Vogt (UFZ)

Martin von Bergen (UFZ)

Hans-Hermann Richnow (UFZ)

Hauke Harms (UFZ)

Frank Schmidt (Uni Greifwald)

Jens Mattow (MPI Berlin)

Bernd Thiede (Uni Oslo)

R development team



http://cache.gawker.com/assets/images/gizmodo/2009/01/bactsunsuet\_01.jpg

