Using R for the design and analysis of computer experiments with the Nimrod toolkit

Neil Diamond¹, David Abramson², Tom Peachey²

1. Department of Econometrics and Business Statistics

2. Caulfield School of Information Technology

• The design and analysis of computer experiments to explore the behavior of complex systems is becoming increasingly important in science and engineering.

- The design and analysis of computer experiments to explore the behavior of complex systems is becoming increasingly important in science and engineering.
- At least two books on the topic:

- The design and analysis of computer experiments to explore the behavior of complex systems is becoming increasingly important in science and engineering.
- At least two books on the topic:
 - The Design and Analysis of Computer Experiments. T. J. Santner, B. J. Williamns, W.I Notz. (2003), Springer: New York.

- The design and analysis of computer experiments to explore the behavior of complex systems is becoming increasingly important in science and engineering.
- At least two books on the topic:
 - The Design and Analysis of Computer Experiments. T. J. Santner, B. J. Williamns, W.I Notz. (2003), Springer: New York.
 - Design and Modeling for Computer Experiments.
 K-T. Fang, R. Li, A. Sudjianto. (2006), Chapman & Hall/CRC: London.

- The design and analysis of computer experiments to explore the behavior of complex systems is becoming increasingly important in science and engineering.
- At least two books on the topic:
 - The Design and Analysis of Computer Experiments. T. J. Santner, B. J. Williamns, W.I Notz. (2003), Springer: New York.
 - Design and Modeling for Computer Experiments.
 K-T. Fang, R. Li, A. Sudjianto. (2006), Chapman & Hall/CRC: London.
- Some R packages-more on that later.

Nimrod

• Developed by Computer Scientists at Monash University's eScience and Grid Engineering Laboratory.

Nimrod

- Developed by Computer Scientists at Monash University's eScience and Grid Engineering Laboratory.
- Automates the formulation, running, and collation of the individual experiments.

Nimrod

- Developed by Computer Scientists at Monash University's eScience and Grid Engineering Laboratory.
- Automates the formulation, running, and collation of the individual experiments.
- Includes a distributed scheduling component that can manage the scheduling of individual jobs.

Nimrod contains tools to

 perform a complete parameter sweep across all possible combinations (Nimrod/G),

Nimrod contains tools to

- perform a complete parameter sweep across all possible combinations (Nimrod/G),
- search using non-linear optimization algorithms (Nimrod/O),

Nimrod contains tools to

- perform a complete parameter sweep across all possible combinations (Nimrod/G),
- search using non-linear optimization algorithms (Nimrod/O),
- or use fractional factorial design techniques (Nimrod/E).

Nimrod contains tools to

- perform a complete parameter sweep across all possible combinations (Nimrod/G),
- search using non-linear optimization algorithms (Nimrod/O),
- or use fractional factorial design techniques (Nimrod/E).

Nimrod contains tools to

- perform a complete parameter sweep across all possible combinations (Nimrod/G),
- search using non-linear optimization algorithms (Nimrod/O),
- or use fractional factorial design techniques (Nimrod/E).

These can be run stand-alone or accessed via the Nimrod portal

Nimrod has been used in an extensive range of applications

• Air Pollution Studies

- Air Pollution Studies
- Laser Physics

- Air Pollution Studies
- Laser Physics
- Ecology

- Air Pollution Studies
- Laser Physics
- Ecology
- Quantum Chemistry

- Air Pollution Studies
- Laser Physics
- Ecology
- Quantum Chemistry
- CAD Digital Simulation

- Air Pollution Studies
- Laser Physics
- Ecology
- Quantum Chemistry
- CAD Digital Simulation
- Antenna Design

- Air Pollution Studies
- Laser Physics
- Ecology
- Quantum Chemistry
- CAD Digital Simulation
- Antenna Design
- Cardiac Modelling

• There are a number of workflow engines which provide scientists with an environment with which they can manage data, the workflows of the various analytical steps in their investigation, and summaries of findings.

- There are a number of workflow engines which provide scientists with an environment with which they can manage data, the workflows of the various analytical steps in their investigation, and summaries of findings.
- Although existing workflow systems can specify arbitrary parallel programs, they are typically not effective with large and variable parallelism.

- There are a number of workflow engines which provide scientists with an environment with which they can manage data, the workflows of the various analytical steps in their investigation, and summaries of findings.
- Although existing workflow systems can specify arbitrary parallel programs, they are typically not effective with large and variable parallelism.
- Similarly, Nimrod was not designed to execute arbitrary workflows.

- There are a number of workflow engines which provide scientists with an environment with which they can manage data, the workflows of the various analytical steps in their investigation, and summaries of findings.
- Although existing workflow systems can specify arbitrary parallel programs, they are typically not effective with large and variable parallelism.
- Similarly, Nimrod was not designed to execute arbitrary workflows.
- Thus, it is difficult to run sweeps over workflows, and workflows containing sweeps.

 To overcome these problems, a new tool (Nimrod/K) is being developed, based on the Kepler workflow engine (Kepler Core, 2009).

Nimrod/K

 To overcome these problems, a new tool (Nimrod/K) is being developed, based on the Kepler workflow engine (Kepler Core, 2009).

イロト 不得 トイヨト イヨト

• It leverages a number of the techniques developed in the earlier Nimrod tools for distributing tasks to the Grid.

7 / 22

Nimrod/K

- To overcome these problems, a new tool (Nimrod/K) is being developed, based on the Kepler workflow engine (Kepler Core, 2009).
- It leverages a number of the techniques developed in the earlier Nimrod tools for distributing tasks to the Grid.
- Kepler allows the user to specify R expressions and access R objects as part of the scientific workflow.

Example Workflow

Using R for the design and analysis of computer experiments with

Statistical Approach to Computer Experiments

• Unlike physical experiments, repeated experiments give the same results.

Statistical Approach to Computer Experiments

- Unlike physical experiments, repeated experiments give the same results.
- Model the output as the realisation of a stochastic process with a correlation structure that depends on a distance to other points in the experiment.

Statistical Approach to Computer Experiments

- Unlike physical experiments, repeated experiments give the same results.
- Model the output as the realisation of a stochastic process with a correlation structure that depends on a distance to other points in the experiment.
- Allows estimates of untried experiments.

Statistical Approach to Computer Experiments

- Unlike physical experiments, repeated experiments give the same results.
- Model the output as the realisation of a stochastic process with a correlation structure that depends on a distance to other points in the experiment.
- Allows estimates of untried experiments.
- Gives an estimate of the uncertainty.

q

Computer Experiments-Designs

• Simplest method-Latin Hypercubes

Computer Experiments-Designs

- Simplest method-Latin Hypercubes
- Other more sophisticated methods include Orthogonal Arrays and Scrambled Nets.

Computer Experiments-Designs

- Simplest method-Latin Hypercubes
- Other more sophisticated methods include Orthogonal Arrays and Scrambled Nets.
- Various space filling designs.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Computer Experiments-Model

$$y(x) = \beta + z(x)$$

$$E(z(x)=0$$

$$Cov(z(t), z(u)) = \sigma_z^2 \prod_{j=1}^d R_j(t_j, u_j)$$
$$R_j(t_j, u_j) = \exp\left[-\theta_j(t_j - u_j)^{p_j}\right]$$

MLE of θ, p, β , and σ^2

Reduces to numerically optimising

$$-\frac{1}{2}(n\ln\hat{\sigma}^2+\ln\det R_D)$$

 R_D = Matrix of correlations for design points

$$\hat{\beta} = (1^{T} R_{D}^{-1} 1^{T})^{-1} 1^{T} R_{D}^{-1} y$$
$$\hat{\sigma}^{2} = \frac{1}{n} (y - 1\hat{\beta})^{T} R_{D}^{-1} (y - 1\hat{\beta})$$

 Using R for the design and analysis of computer experiments with

Best Linear Unbiased Predictor for an untried x

$$\hat{y}_x = \hat{\beta} + r^T(x)R_D^{-1}(y - 1\hat{\beta})$$

where

$$r(x) = [R(x_1, x), R(x_2, x), \dots, R(x_n, x)]^T$$

Design point : $[x_1, x_2, ..., x_n]$ Untried Input : x Interpolates the data points. 13

BACCO

- Emulator
- Approximator

BACCO

- Emulator
- Approximator
- Calibrator

BACCO

- Emulator
- Approximator
- Calibrator

• mlegp: an R package for Gaussian process modeling and sensitivity analysis

BACCO

- Emulator
- Approximator
- Calibrator
- mlegp: an R package for Gaussian process modeling and sensitivity analysis
- Certainly others ...

Example Workflow

Using R for the design and analysis of computer experiments with

Latin Hypercube Actor

Edit parameters for Latin Hypercube		
9		
Ŷ	R function or script:	<pre>library(emulator) set.seed(200592) nimrod.xmat <- mins+(maxs-mins)*latin.hypercube(N,dims) colnames(nimrod.xmat) <- unlist(strsplit(varnames,split=",")) if(dime>2)(pairs(nimrod.xmat)) else (plot(nimrod.xmat))</pre>
	R working directory: Save or not: Graphics Format: Graphics Output: Automatically display graphics:	C:\Documents and Settings\diamond\.kepler\ -save
	Number of X pixels in image: Number of Y pixels in image: class:	480 480 org.ecoinformatics.seek.R.RExpression
	semanticType00: semanticType11: firing:PerTeration	um:Isid:localhost:onto:1:1#MathOperationActor um:Isid:localhost:onto:2:1#GeneralPurpose
Commit Add Remove Restore Defaults Preferences Help Cancel		

16 / 22

Latin Hypercube Design

◆□ → ◆□ → ◆ ■ → ◆ ■ → ○ へ ○ 17/22

Nimrod/K Actor

 Nimrod takes the experimental design and controls the running of the experiments and collation of results.

Nimrod/K Actor

- Nimrod takes the experimental design and controls the running of the experiments and collation of results.
- Passes the results onto mlegp actor which fits the Gaussian model to the data.

mlegp predictions Actor

 Takes fitted model and predicts at a grid of untried inputs.

mlegp predictions Actor

- Takes fitted model and predicts at a grid of untried inputs.
- Inputs are the granularity of the grid, and which are the primary and conditioning inputs.

mlegp predictions Actor

- Takes fitted model and predicts at a grid of untried inputs.
- Inputs are the granularity of the grid, and which are the primary and conditioning inputs.
- Uses Lattice graphics to produce a visualisation of the surface.

Visualisation

• Computer Experiments are very important.

- Computer Experiments are very important.
- Many tools in R both to design and analyse computer experiments.

- Computer Experiments are very important.
- Many tools in R both to design and analyse computer experiments.
- Nimrod tools are convenient in managing the execution of the computer experiments.

- Computer Experiments are very important.
- Many tools in R both to design and analyse computer experiments.
- Nimrod tools are convenient in managing the execution of the computer experiments.
- Using Nimrod/K takes advantage of the Kepler workflow engine.

- Computer Experiments are very important.
- Many tools in R both to design and analyse computer experiments.
- Nimrod tools are convenient in managing the execution of the computer experiments.
- Using Nimrod/K takes advantage of the Kepler workflow engine.
- Kepler and R are integrated, making it easy to use existing packages in R for computer experiments, and extends their usefulness.

MeSsAGE Lab

Monash eScience and Grid Engineering Laboratory http://messagelab.monash.edu.au/