Fitting parametric distributions using R: the fitdistrplus package

M. L. Delignette-Muller - CNRS UMR 5558 R. Pouillot J.-B. Denis - INRA MIAJ

useR! 2009,10/07/2009

(日)

Background

Specifying the probability distribution that best fits a sample data among a predefined family of distributions

- a frequent need especially in Quantitative Risk Assessment
- general-purpose maximum-likelihood fitting routine for the parameter estimation step : fitdistr(MASS) (Venables and Ripley, 2002)
- possibility to implement other steps using **R** (Ricci, 2005)
- but no specific package dedicated to the whole process
- difficulty to work with censored data

Objective

Build a package that provides functions to help the whole process of specification of a distribution from data

- choose among a family of distributions the best candidates to fit a sample
- estimate the distribution parameters and their uncertainty
- assess and compare the goodness-of-fit of several distributions

that specifically handles different kinds of data

- discrete
- continuous with possible censored values (right-, left- and interval-censored with several upper and lower bounds)

 Skewness-kurtosis graph for the choice of distributions (Cullen and Frey, 1999)

• Two fitting methods

- matching moments for a limited number of distributions and non-censored data
- maximum likelihood (mle) using optim(stats) for any distribution, predefined or defined by the user for non-censored or censored data
- Uncertainty on parameter estimations
 - standard errors from the Hessian matrix (only for mle)
 - parametric or non-parametric bootstrap
- Assessment of goodness-of-fit
 - chi-squared, Kolmogorov-Smirnov, Anderson-Darling statistics
 - density, cdf, P-P and Q-Q plots

• Skewness-kurtosis graph for the choice of distributions

(Cullen and Frey, 1999)

- Two fitting methods
 - matching moments for a limited number of distributions and non-censored data
 - maximum likelihood (mle) using optim(stats) for any distribution, predefined or defined by the user for non-censored or censored data
- Uncertainty on parameter estimations
 - standard errors from the Hessian matrix (only for mle)
 - parametric or non-parametric bootstrap
- Assessment of goodness-of-fit
 - chi-squared, Kolmogorov-Smirnov, Anderson-Darling statistics
 - density, cdf, P-P and Q-Q plots

• Skewness-kurtosis graph for the choice of distributions

(Cullen and Frey, 1999)

(日) (日) (日) (日) (日) (日) (日)

- Two fitting methods
 - matching moments for a limited number of distributions and non-censored data
 - maximum likelihood (mle) using optim(stats) for any distribution, predefined or defined by the user for non-censored or censored data
- Uncertainty on parameter estimations
 - standard errors from the Hessian matrix (only for mle)
 - parametric or non-parametric bootstrap
- Assessment of goodness-of-fit
 - chi-squared, Kolmogorov-Smirnov, Anderson-Darling statistics
 - density, cdf, P-P and Q-Q plots

• Skewness-kurtosis graph for the choice of distributions

(Cullen and Frey, 1999)

- Two fitting methods
 - matching moments for a limited number of distributions and non-censored data
 - maximum likelihood (mle) using optim(stats) for any distribution, predefined or defined by the user for non-censored or censored data
- Uncertainty on parameter estimations
 - standard errors from the Hessian matrix (only for mle)
 - parametric or non-parametric bootstrap
- Assessment of goodness-of-fit
 - chi-squared, Kolmogorov-Smirnov, Anderson-Darling statistics
 - density, cdf, P-P and Q-Q plots

Main functions of fitdistrplus

- descdist: provides a skewness-kurtosis graph to help to choose the best candidate(s) to fit a given dataset
- fitdist and plot.fitdist: for a given distribution, estimate parameters and provide goodness-of-fit graphs and statistics
- bootdist: for a fitted distribution, simulates the uncertainty in the estimated parameters by bootstrap resampling
- fitdistcens, plot.fitdistcens and bootdistcens: same functions dedicated to continuous data with censored values

Skewness-kurtosis plot for continuous data

Ex. on consumption data: food serving sizes (g)

> descdist(serving.size)

Cullen and Frey graph

square of skewness

Image: A mathematical states of the state

Skewness-kurtosis plot for continuous data with bootstrap option

> descdist(serving.size,boot=1001)

Cullen and Frey graph

Skewness-kurtosis plot for discrete data

Ex. on microbial data: counts of colonies on small food samples

> descdist(colonies.count,discrete=TRUE)

Cullen and Frey graph

Fit of a given distribution by maximum likelihood or matching moments

Ex. on consumption data: food serving sizes (g)

Maximum likelihood estimation

- > fg.mle<-fitdist(serving.size,"gamma",method="mle")
- > summary(fg.mle)

estimate Std. Error shape 4.0083 0.34134 rate 0.0544 0.00494 Loglikelihood: -1254

- Matching moments estimation
 - > fg.mom<-fitdist(serving.size,"gamma",method="mom")</pre>
 - > summary(fg.mom)

Fit of a given distribution by maximum likelihood or matching moments

Ex. on consumption data: food serving sizes (g)

Maximum likelihood estimation

- > fg.mle<-fitdist(serving.size,"gamma",method="mle")
- > summary(fg.mle)

estimate Std. Error shape 4.0083 0.34134 rate 0.0544 0.00494 Loglikelihood: -1254

Matching moments estimation

- > fg.mom<-fitdist(serving.size, "gamma", method="mom")
- > summary(fg.mom)

	estimate
shape	4.2285
rate	0.0574

Comparison of goodness-of-fit statistics

Ex. on consumption data: food serving sizes (g)

Comparison of the fits of three distributions using the Anderson-Darling statistics

```
• Gamma
> fitdist(serving.size,"gamma")$ad
[1] 3.566019
```

Iognormal

```
> fitdist(serving.size,"lnorm")$ad
[1] 4.543654
```

Weibull

```
> fitdist(serving.size,"weibull")$ad
[1] 3.573646
```

Goodness-of-fit graphs for continuous data

- Ex. on consumption data: food serving sizes (g)
- > plot(fg.mle)

Empirical and theoretical distr.

200

Goodness-of-fit graphs for discrete data

Ex. on microbial data: counts of colonies on small food samples

- > fnbinom<-fitdist(colonies.count,"nbinom")
- > plot(fnbinom)

Empirical (black) and theoretical (red) distr.

Empirical (black) and theoretical (red) CDFs

▲ロ > ▲ 圖 > ▲ 画 > ▲ 画 > の Q @

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Fit of a given distribution by maximum likelihood to censored data

- Ex. on microbial censored data: concentrations in food
 - with left censored values (not detected)
 - and interval censored values (detected but not counted)

```
> log10.conc
   left right
                           > fnorm<-fitdistcens(log10.conc, "norm")</pre>
  1.73 1.73
1
                           > summarv(fnorm)
2
 1.51 1.51
3
 0.77 0.77
                                estimate Std. Error
4 1.96 1.96
                           mean 0.118 0.332
5 1.96 1.96
                           sd 1.426 0.261
6 -1.40 0.00
7
 -1.40 - 0.70
                           Loglikelihood: -32.1
8
 NA -1.40
9
 -0.11 -0.11
. . .
```

Goodness-of-fit graphs for censored data

- Ex. on microbial censored data: concentrations in food
- > plot(fnorm)

Cumulative distribution plot

Bootstrap resampling

Ex. on microbial censored data

- > bnorm<-bootdistcens(fnorm)
- > summary(bnorm)

Nonparametric bootstrap medians and 95% CI

Median 2.5% 97.5%

- mean 0.233 -0.455 0.875
- sd 1.294 0.908 1.776

> plot(bnorm)

Scatterplot of the boostrapped values of the two parameters

・ロト・日本・日本・日本・日本・日本

Use of the bootstrap in risk assessment

The bootstrap sample may be used to take into account uncertainty in risk assessment, in two-dimensional Monte Carlo simulations, as proposed in the package mc2d.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

(日) (日) (日) (日) (日) (日) (日)

Conclusion

• fitdistrplus could help risk assessment. It is a part of a collaborative project with 2 other packages under development, mc2d and ReBaStaBa:

The R-Forge project "Risk Assessment with R"

http://riskassessment.r-forge.r-project.org/

• fitdistrplus could also be used more largely to help the fit of univariate distributions to data

(日) (日) (日) (日) (日) (日) (日)

Conclusion

- fitdistrplus could help risk assessment.
 It is a part of a collaborative project with 2 other packages under development, mc2d and ReBaStaBa:
 - The R-Forge project "Risk Assessment with R" http://riskassessment.r-forge.r-project.org/
- fitdistrplus could also be used more largely to help the fit of univariate distributions to data

Still many things to do

fitdistrplus is still under development. Many improvements are planned

- other goodness-of-fit statistics
- other graphs for goodness-of-fit for censored data (Turnbull,...)
- optimized choice of the algorithm used in optim for the likelihood maximization
- graphs of likelihood contours (detection of identifiability problems)
- o ...

do not hesitate to provide us other improvement ideas !