Managing chronological objects with timeDate
and timeSeries

Yohan Chalabi and Diethelm Wuertz

ITP ETH, Zurich
Rmetrics Association, Zurich
Finance Online, Zurich

useR! 2009

Outline

© timeDate Class
o timeDate Definition
@ Financial Center and Holiday Management

© timeSeries Class
@ timeSeres Definition
@ Manipulating a timeSeries
@ Adding New Methods
@ @recordIDsConcept

© Summary

timeDate Class

Outline

© timeDate Class

timeDate Class
@000

timeDate

timeDate class is for

@ mixing data collected in different time zones

@ calendar manipulations for business days, weekends, public and
ecclesiastical holidays.

@ and is almost compatible with the same class in S-Plus.

timeDate Class
0e00

timeDate class

The timeDate class represents calendar dates and times as

> library(timeDate)
> showClass("timeDate")

Class "timeDate" [package "timeDate"]

Slots:
Name : Data format FinCenter
Class: POSIXct character character

where @Data are the timestamps in POSIXct, @format is the format
typically applied to @Data and @FinCenter is the financial center.

timeDate Class
[e]e] o]

Create a timeDate object

> ZH <- timeDate("2009-01-01 16:00:00", zone = "GMT", FinCenter = "Zurich")
> NY <- timeDate("2009-01-01 18:00:00", zone = "GMT", FinCenter = "NewYork")
> c(ZH, NY)

Zurich
[1] [2009-01-01 17:00:00] [2009-01-01 19:00:00]

> c(NY, ZH)

NewYork
[1] [2009-01-01 13:00:00] [2009-01-01 11:00:00]

timeDate Class
[e]e]e]]

Operations

Many operations can be performed on timeDate objects.
Math Operations

Lagging

Rounding and Truncating

Subsetting

Logical Test

Coercions and Transformation

Concatentation and Reorderings

timeDate Class
@000

FinCenter

Each financial center has an associated function which returns its daylight
saving time rule (DST). Theses functions are named as their financial
center, e.g. Zurich(), and return a data.frame with 4 columns,

> listFinCenter ("Europe/[AB].*")

[1] "Europe/Amsterdam" "Europe/Andorra"

[3] "Europe/Athens" "Europe/Belgrade"
[6] "Europe/Berlin" "Europe/Bratislava"
[7] "Europe/Brussels" "Europe/Bucharest"

[9] "Europe/Budapest"
> head(Zurich(), 8)

Zurich offSet isdst TimeZone numeric
1901-12-14 20:45:52 3600 0 CET -2147397248
1941-05-05 00:00:00 7200 CEST -904435200
1941-10-06 00:00:00 3600 CET -891129600
1942-05-04 00:00:00 7200 CEST -872985600
1942-10-05 00:00:00 3600 CET -859680000
1981-03-29 01:00:00 7200 CEST 354675600
1981-09-27 01:00:00 3600 CET 370400400
1982-03-28 01:00:00 7200 CEST 386125200

00 N O O WN =
O R O K O

timeDate Class
(o] lee]

Holidays

There are different functions to compute:

@ the last day in a given month and year,
@ the n-days before or after a given date,
@ the n-th occurrences of the n-days for a specified year/month,

@ or the last n-days for a specified year/month.

timeDate Class
{e]e] o]

Holidays

> tH <- listHolidays()
> # number of holiday days available in timeDate
> length(tH)

[1] 115

> # the first 10
> head(tH, 10)

[1] "Adventist" "Advent2nd"
[3] "Advent3rd" "Advent4th"
[56] "AllSaints" "AllSouls"
[7] "Annunciation" "Ascension"
[9] "AshWednesday" "AssumptionOfMary"

> # The date of Easter for the next 3 years:
> Easter(2009: (2009+3))

GMT
[1]1 [2009-04-12] [2010-04-04] [2011-04-24] [2012-04-08]

timeDate Class
(eJele]]

Calendar and Logical Test

@ The following three functions can be used as model to build new
holiday calendars.
o holidayZURICHQ) : the Zurich holiday calendar,
e holidayNYSE() : the NYSE stock exchange holiday calendar
o and holidayTSX() : the TSX holiday calendar.

o Weekdays, weekends, business days and holidays can be tested with
the functions:
o isWeekday()
o isWeekend()
e isBizday()
e isHoliday()

timeSeries Class

Outline

© timeSeries Class

timeSeries Class
®0

timeSeries class

The timeSeries class represents time series as

> library(timeSeries)
> showClass("timeSeries")

Class "timeSeries" [package "timeSeries"]

Slots:

Name: .Data units positions
Class: matrix character numeric
Name: format FinCenter recordIDs
Class: character character data.frame
Name: title documentation

Class: character character

Extends:

Class "structure", from data part
Class "vector", by class "structure", distance 2, with explicit coerce

Note: timeSeries extends the virtual class structure

timeSeries Class
oe

timeSeries class

> data <- matrix(round(rnorm(6), 3), ncol = 2)
> td <- timeCalendar()[1:3]

> ts <- timeSeries(data, td)

> ts

GMT

TS.1 TS.2
2009-01-01 0.084 0.858
2009-02-01 -0.238 -1.151
2009-03-01 -0.158 -0.768

timeSeries Class
®00000000000

Manipulating a timeSeries

Additional timeSeries operations which might be different from other
time series packages.

@ Sorting and reverting
Aggregation

Lagging

Rolling windows

e 6 o6 o

Binding and merging

timeSeries Class
O@0000000000

Sorting and Ordering

The time stamps of timeSeries objects can be sampled, sorted, and

reverted.
> ts <- dummySeries()
> ts
GMT

TS.1 TS.2
2009-01-01 0.050420 0.9502815
2009-02-01 0.119620 0.4814418
2009-03-01 0.099209 0.9890132
2009-04-01 0.051417 0.4020588
2009-05-01 0.889680 0.1110520
2009-06-01 0.225331 0.7122814
2009-07-01 0.361068 0.3452739
2009-08-01 0.026264 0.3224443
2009-09-01 0.778356 0.4797025
2009-10-01 0.810493 0.0053789
2009-11-01 0.277139 0.6304754
2009-12-01 0.239023 0.1460500

Sorting and Ordering

> sa <- sample(ts)

> sa

GMT

2009-12-01
2009-10-01
2009-03-01
2009-01-01
2009-02-01
2009-06-01
2009-09-01
2009-04-01
2009-08-01
2009-05-01
2009-07-01
2009-11-01

TS.1

.239023
.810493
.099209
.050420
.119620
.225331
.778356
.051417
.026264
.889680
.361068
.277139

TS.2

.1460500
.0053789
.9890132
.9502815
.4814418
.7122814
.4797025

4020588
3224443

.1110520
.3452739
.6304754

timeSeries Class
O0@000000000

Sorting and Ordering

> so <- sort(sa)

> so

GMT

2009-01-01
2009-02-01
2009-03-01
2009-04-01
2009-05-01
2009-06-01
2009-07-01
2009-08-01
2009-09-01
2009-10-01
2009-11-01
2009-12-01

TS.1

.050420
.119620
.099209
.051417
.889680
.225331
.361068
.026264
. 778356
.810493
.277139
.239023

TS.2

.9502815
.4814418
.9890132
.4020588
.1110520
.7122814
.3452739
.3224443
.4797025
.0053789
.6304754
.1460500

timeSeries Class
0O00@00000000

Sorting and Ordering

> re <- rev(so)

> re

GMT

2009-12-01
2009-11-01
2009-10-01
2009-09-01
2009-08-01
2009-07-01
2009-06-01
2009-05-01
2009-04-01
2009-03-01
2009-02-01
2009-01-01

TS.1

.239023
.277139
.810493
. 778356
.026264
.361068
.225331
.889680
.051417
.099209
.119620
.050420

TS.2

.1460500
.6304754
.0053789
.4797025
.3224443
.3452739
.7122814
.1110520
.4020588
.9890132
.4814418
.9502815

timeSeries Class
000080000000

timeSeries Class
[e]e]e]e]e] le]elelele]e]

Aggregation

> library(fEcofin)
> LPP <- as.timeSeries(data(SWXLP))[,4:6]
> (by <- timeSequence(from = "2003-01-01", to = "2005-01-01", by = "quarter"))

GMT

[1] [2003-01-01] [2003-04-01] [2003-07-01] [2003-10-01]
[56] [2004-01-01] [2004-04-01] [2004-07-01] [2004-10-01]
[9] [2005-01-01]

> aggregate (LPP, by, mean)

GMT

LP25 LP40 LP60
2003-01-01 100.37 97.073 92.658
2003-04-01 97.46 86.600 73.363
2003-07-01 100.43 90.155 77.372
2003-10-01 103.42 94.390 82.812
2004-01-01 104.86 96.218 84.984
2004-04-01 108.08 99.842 88.920
2004-07-01 107.71 99.763 89.154
2004-10-01 107.71 99.238 88.076
2005-01-01 109.85 101.101 89.602

timeSeries Class
O00000e00000

Rolling Windows

Rolling windows can be performed with applySeries().

> by <- periods(time(LPP), period = "24m", by = "6m")
> applySeries(LPP, from = by$from, to = by$to, FUN = "colMeans")

GMT

LP25 LP40 LP60
2001-12-31 100.911 99.438 97.310
2002-06-30 101.209 98.476 94.639
2002-12-31 100.252 95.199 88.487
2003-06-30 99.437 92.248 83.037
2003-12-31 100.420 92.120 81.543
2004-06-30 102.222 93.126 81.524
2004-12-31 104.943 95.920 84.295
2005-06-30 108.678 100.223 89.070
2005-12-31 112.648 104.784 94.170
2006-06-30 116.179 109.216 99.525
2006-12-31 120.190 114.424 105.964

timeSeries Class
0O000000@0000

Merging and Binding

There are four functions to bind time series together. These are, with
increasing complexity, c(), cbind (), rbind() and merge().

> (tsl <- timeSeries(matrix(rnorm(4), ncol = 2), c("2009-01-01", "2009-03-01")))

GMT

TS.1 TS.2
2009-01-01 -0.195804 1.18347
2009-03-01 -0.063472 -0.89746

> (ts2 <- timeSeries(matrix(rnorm(4), ncol = 2), c("2009-02-01", "2009-04-01")))

GMT

TS.1 TS.2
2009-02-01 -0.11698 -1.2321
2009-04-01 -1.39368 -1.6083

timeSeries Class
0O0000000e000

> c(tsl1, ts2)

[1] -0.195804 -0.063472 1.183473 -0.897456 -0.116982
[6] -1.393675 -1.232076 -1.608285

timeSeries Class
000000000800

cbind ()

> cbind(ts1, ts2)

GMT

TS.1.1 TS.2.1 TS.1.2 TS.2.2
2009-01-01 -0.195804 1.18347 NA NA
2009-02-01 NA NA -0.11698 -1.2321
2009-03-01 -0.063472 -0.89746 NA NA

2009-04-01 NA NA -1.39368 -1.6083

rbind ()

> rbind(ts1, ts2)

GMT

2009-01-01
2009-03-01
2009-02-01
2009-04-01

TS
-0
-0
-0
-1

.1_TS.1 TS.2_TS.2

.195804
.063472
.116982
.393675

1.18347
-0.89746
-1.23208
-1.60829

timeSeries Class
000000000080

> merge(tsl, ts2)

GMT

TS.1 TS.2
2009-01-01 -0.195804 1.18347
2009-02-01 -0.116982 -1.23208
2009-03-01 -0.063472 -0.89746
2009-04-01 -1.393675 -1.60829

timeSeries Class
00000000000 e

timeSeries Class

Adding New Methods

@ Since timeSeries is an S4 class, we can use the function
setMethod () to create new methods for a generic function which
has can not handle by default the class.

@ In this example, we write a method for the lowess() function from
the stats package.

> setMethod("lowess", "timeSeries",
function(x, y = NULL, f = 2/3, iter = 3)
{
stopifnot (isUnivariate(x))
series(x) <- stats::lowess(x = x, y, f, iter)$y
x
»

[1] "lowess"

timeSeries Class

Adding new methods

> LP60 <- LPP[,"LP60"]

> LP60low <- lowess(LP60, f = 0.08)

> plot (LP60)

> lines(LP60low, col = "brown", lwd = 2)

T T T T T T
2000-01-03 2001-06-22 2002-12-10 2004-05-30 2005-11-17 2007-05-08

timeSeries Class

@recordIDs Concept

@ The slot @recordIDs is meant for additional information that we
want to keep for each time entries but which is not part of data part.

@ As starting from timeSeries version '2100.84' we have added a
method for the operator >$’ to access the @recordIDs as well as
the data part.

o by default show() will print the data part with the @recordIDs.
Note the ’*’ in the column names of @recordIDs in the output.

@ Q@recordIDs can be used to give a data.frame behavior to your
time series.

> ts$id <- "id"

> head(ts)
QMT

TS.1 TS.2 id* > cov(ts)
2009-01-01 0.050420 0.950282 id TS.1 TS.2
2009-02-01 0.119620 0.481442 id TS.1 0.101236 -0.056448
2009-03-01 0.099209 0.989013 id TS.2 -0.056448 0.097816
2009-04-01 0.051417 0.402059 id
2009-05-01 0.889680 0.111052 id
2009-06-01 0.225331 0.712281 id

timeSeries Class

@recordIDs Example

@ A good example is to include turnpoints of the smoothed index to
the time series.

@ We can use the turnpoints() function from the R package

pastecs!.

@ The function determines the number and the positions of extrema,
i.e. the turning points, either peaks or pits, in a regular time series.

> library(pastecs)
> setMethod("turnpoints", "timeSeries", function(x)
{
stopifnot (isUnivariate(x))
tp <- turnpoints(as.ts(x))
x$peaks <- tp$peaks #-> need timeSeries >= 2100.84
x$pits <- tp$pits
x

»

[1] "turnpoints"

llbanez, Grosjean & Etienne, 2009

timeSeries Class

@recordIDs Example

> head (LP60low <- turnpoints(LP60low))

GMT

LP60 peaks* pits*
2000-01-03 97.730 FALSE FALSE
2000-01-04 97.767 FALSE FALSE
2000-01-05 97.805 FALSE FALSE
2000-01-06 97.842 FALSE FALSE
2000-01-07 97.880 FALSE FALSE
2000-01-10 97.917 FALSE FALSE

timeSeries Class

@recordIDs Example

We plot the original index series and the smoothed series and add points
for the peaks and pits in green and red respectively.

> plot (LP60)

> lines(LP60low, col = "brown", lwd = 2)

> points(LP60low[LP60low$peaks,], col = "green3", pch = 24)
> points(LP60low[LP60low$pits,], col = "red", pch = 25)

Note: the use of the operator ’$°.

timeSeries Class

@recordIDs Example

T T T T T T
2000-01-03 2001-06-22 2002-12-10 2004-05-30 2005-11-17 2007-05-08

Summary
Outline

© Summary

Summary

Summary

timeSeries is meant to have a matrix like behavior
With some aspects of a data.frame,
It can handle ordered/unordered data and display them in any order.

It takes care of financial centers when merging/binding.

And has facilities to manage calendars thanks to the timeDate
package.

Summary
References |

¥ D. Wuertz, Y. Chalabi, W. Chen, A. Ellis,
Portfolio Optimization with R/Rmetrics.
Finance Online, 20009.

[D. Wuertz, Y. Chalabi, A. Ellis,
FAQ - Time Series Objects for R in Finance
http://www.rmetrics.org

http://www.rmetrics.org

Summary

> toLatex(sessionInfo())

@ R version 2.10.0 Under development (unstable) (2009-07-02
r48890), 1686-pc-linux-gnu

@ lLocale: LC_CTYPE=en_US.UTF-8, LC_NUMERI ...

@ Base packages: base, datasets, graphics, grDevices, methods, stats,
utils

@ Other packages: boot 1.2-37, fEcofin 2100.77, pastecs 1.3-8,
timeDate 2100.86, timeSeries 2100.84

o Loaded via a namespace (and not attached): tools 2.10.0

Summary

Managing chronological objects with timeDate

and timeSeries

Yohan Chalabi and Diethelm Wuertz

ITP ETH, Zurich
Rmetrics Association, Zurich
Finance Online, Zurich

useR! 2009

	timeDate Class
	timeDate Definition
	Financial Center and Holiday Management

	timeSeries Class
	timeSeres Definition
	Manipulating a =-1 timeSeries
	Adding New Methods
	=-1 @recordIDs Concept

	Summary

