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timeDate

timeDate class is for

@ mixing data collected in different time zones

@ calendar manipulations for business days, weekends, public and
ecclesiastical holidays.

@ and is almost compatible with the same class in S-Plus.
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timeDate class

The timeDate class represents calendar dates and times as

> library(timeDate)
> showClass("timeDate")

Class "timeDate" [package "timeDate"]

Slots:
Name : Data format FinCenter
Class: POSIXct character character

where @Data are the timestamps in POSIXct, @format is the format
typically applied to @Data and @FinCenter is the financial center.
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Create a timeDate object

> ZH <- timeDate("2009-01-01 16:00:00", zone = "GMT", FinCenter = "Zurich")
> NY <- timeDate("2009-01-01 18:00:00", zone = "GMT", FinCenter = "NewYork")
> c(ZH, NY)

Zurich
[1] [2009-01-01 17:00:00] [2009-01-01 19:00:00]

> c(NY, ZH)

NewYork
[1] [2009-01-01 13:00:00] [2009-01-01 11:00:00]
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Operations

Many operations can be performed on timeDate objects.
Math Operations

Lagging

Rounding and Truncating

Subsetting

Logical Test

Coercions and Transformation

Concatentation and Reorderings
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FinCenter

Each financial center has an associated function which returns its daylight
saving time rule (DST). Theses functions are named as their financial
center, e.g. Zurich(), and return a data.frame with 4 columns,

> listFinCenter ("Europe/[AB].*")

[1] "Europe/Amsterdam" "Europe/Andorra"

[3] "Europe/Athens" "Europe/Belgrade"
[6] "Europe/Berlin" "Europe/Bratislava"
[7] "Europe/Brussels"  "Europe/Bucharest"

[9] "Europe/Budapest"
> head(Zurich(), 8)

Zurich offSet isdst TimeZone numeric
1901-12-14 20:45:52 3600 0 CET -2147397248
1941-05-05 00:00:00 7200 CEST -904435200
1941-10-06 00:00:00 3600 CET -891129600
1942-05-04 00:00:00 7200 CEST -872985600
1942-10-05 00:00:00 3600 CET -859680000
1981-03-29 01:00:00 7200 CEST 354675600
1981-09-27 01:00:00 3600 CET 370400400
1982-03-28 01:00:00 7200 CEST 386125200
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Holidays

There are different functions to compute:

@ the last day in a given month and year,
@ the n-days before or after a given date,
@ the n-th occurrences of the n-days for a specified year/month,

@ or the last n-days for a specified year/month.
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Holidays

> tH <- listHolidays()
> # number of holiday days available in timeDate
> length(tH)

[1] 115

> # the first 10
> head(tH, 10)

[1] "Adventist" "Advent2nd"
[3] "Advent3rd" "Advent4th"
[56] "AllSaints" "AllSouls"
[7] "Annunciation" "Ascension"
[9] "AshWednesday" "AssumptionOfMary"

> # The date of Easter for the next 3 years:
> Easter(2009: (2009+3))

GMT
[1]1 [2009-04-12] [2010-04-04] [2011-04-24] [2012-04-08]
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Calendar and Logical Test

@ The following three functions can be used as model to build new
holiday calendars.
o holidayZURICHQ) : the Zurich holiday calendar,
e holidayNYSE() : the NYSE stock exchange holiday calendar
o and holidayTSX() : the TSX holiday calendar.

o Weekdays, weekends, business days and holidays can be tested with
the functions:
o isWeekday()
o isWeekend()
e isBizday()
e isHoliday()



timeSeries Class

Outline

© timeSeries Class



timeSeries Class
®0

timeSeries class

The timeSeries class represents time series as

> library(timeSeries)
> showClass("timeSeries")

Class "timeSeries" [package "timeSeries"]

Slots:

Name: .Data units positions
Class: matrix character numeric
Name: format FinCenter recordIDs
Class: character character data.frame
Name: title documentation

Class: character character

Extends:

Class "structure", from data part
Class "vector", by class "structure", distance 2, with explicit coerce

Note: timeSeries extends the virtual class structure
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timeSeries class

> data <- matrix(round(rnorm(6), 3), ncol = 2)
> td <- timeCalendar()[1:3]

> ts <- timeSeries(data, td)

> ts

GMT

TS.1 TS.2
2009-01-01 0.084 0.858
2009-02-01 -0.238 -1.151
2009-03-01 -0.158 -0.768
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Manipulating a timeSeries

Additional timeSeries operations which might be different from other
time series packages.

@ Sorting and reverting
Aggregation

Lagging

Rolling windows

e 6 o6 o

Binding and merging
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Sorting and Ordering

The time stamps of timeSeries objects can be sampled, sorted, and

reverted.
> ts <- dummySeries()
> ts
GMT

TS.1 TS.2
2009-01-01 0.050420 0.9502815
2009-02-01 0.119620 0.4814418
2009-03-01 0.099209 0.9890132
2009-04-01 0.051417 0.4020588
2009-05-01 0.889680 0.1110520
2009-06-01 0.225331 0.7122814
2009-07-01 0.361068 0.3452739
2009-08-01 0.026264 0.3224443
2009-09-01 0.778356 0.4797025
2009-10-01 0.810493 0.0053789
2009-11-01 0.277139 0.6304754
2009-12-01 0.239023 0.1460500



Sorting and Ordering

> sa <- sample(ts)

> sa

GMT

2009-12-01
2009-10-01
2009-03-01
2009-01-01
2009-02-01
2009-06-01
2009-09-01
2009-04-01
2009-08-01
2009-05-01
2009-07-01
2009-11-01

TS.1

.239023
.810493
.099209
.050420
.119620
.225331
.778356
.051417
.026264
.889680
.361068
.277139

TS.2

.1460500
.0053789
.9890132
.9502815
.4814418
.7122814
.4797025

4020588
3224443

.1110520
.3452739
.6304754
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Sorting and Ordering

> so <- sort(sa)

> so

GMT

2009-01-01
2009-02-01
2009-03-01
2009-04-01
2009-05-01
2009-06-01
2009-07-01
2009-08-01
2009-09-01
2009-10-01
2009-11-01
2009-12-01

TS.1

.050420
.119620
.099209
.051417
.889680
.225331
.361068
.026264
. 778356
.810493
.277139
.239023

TS.2

.9502815
.4814418
.9890132
.4020588
.1110520
.7122814
.3452739
.3224443
.4797025
.0053789
.6304754
.1460500
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Sorting and Ordering

> re <- rev(so)

> re

GMT

2009-12-01
2009-11-01
2009-10-01
2009-09-01
2009-08-01
2009-07-01
2009-06-01
2009-05-01
2009-04-01
2009-03-01
2009-02-01
2009-01-01

TS.1

.239023
.277139
.810493
. 778356
.026264
.361068
.225331
.889680
.051417
.099209
.119620
.050420

TS.2

.1460500
.6304754
.0053789
.4797025
.3224443
.3452739
.7122814
.1110520
.4020588
.9890132
.4814418
.9502815
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Aggregation

> library(fEcofin)
> LPP <- as.timeSeries(data(SWXLP))[,4:6]
> (by <- timeSequence(from = "2003-01-01", to = "2005-01-01", by = "quarter"))

GMT

[1] [2003-01-01] [2003-04-01] [2003-07-01] [2003-10-01]
[56] [2004-01-01] [2004-04-01] [2004-07-01] [2004-10-01]
[9] [2005-01-01]

> aggregate (LPP, by, mean)

GMT

LP25 LP40 LP60
2003-01-01 100.37 97.073 92.658
2003-04-01 97.46 86.600 73.363
2003-07-01 100.43 90.155 77.372
2003-10-01 103.42 94.390 82.812
2004-01-01 104.86 96.218 84.984
2004-04-01 108.08 99.842 88.920
2004-07-01 107.71 99.763 89.154
2004-10-01 107.71 99.238 88.076
2005-01-01 109.85 101.101 89.602



timeSeries Class
O00000e00000

Rolling Windows

Rolling windows can be performed with applySeries().

> by <- periods(time(LPP), period = "24m", by = "6m")
> applySeries(LPP, from = by$from, to = by$to, FUN = "colMeans")

GMT

LP25 LP40 LP60
2001-12-31 100.911 99.438 97.310
2002-06-30 101.209 98.476 94.639
2002-12-31 100.252 95.199 88.487
2003-06-30 99.437 92.248 83.037
2003-12-31 100.420 92.120 81.543
2004-06-30 102.222 93.126 81.524
2004-12-31 104.943 95.920 84.295
2005-06-30 108.678 100.223 89.070
2005-12-31 112.648 104.784 94.170
2006-06-30 116.179 109.216 99.525
2006-12-31 120.190 114.424 105.964
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Merging and Binding

There are four functions to bind time series together. These are, with
increasing complexity, c(), cbind (), rbind() and merge().

> (tsl <- timeSeries(matrix(rnorm(4), ncol = 2), c("2009-01-01", "2009-03-01")))

GMT

TS.1 TS.2
2009-01-01 -0.195804 1.18347
2009-03-01 -0.063472 -0.89746

> (ts2 <- timeSeries(matrix(rnorm(4), ncol = 2), c("2009-02-01", "2009-04-01")))

GMT

TS.1 TS.2
2009-02-01 -0.11698 -1.2321
2009-04-01 -1.39368 -1.6083
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> c(tsl1, ts2)

[1] -0.195804 -0.063472 1.183473 -0.897456 -0.116982
[6] -1.393675 -1.232076 -1.608285
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cbind ()

> cbind(ts1, ts2)

GMT

TS.1.1 TS.2.1 TS.1.2 TS.2.2
2009-01-01 -0.195804 1.18347 NA NA
2009-02-01 NA NA -0.11698 -1.2321
2009-03-01 -0.063472 -0.89746 NA NA

2009-04-01 NA NA -1.39368 -1.6083



rbind ()

> rbind(ts1, ts2)

GMT

2009-01-01
2009-03-01
2009-02-01
2009-04-01

TS
-0
-0
-0
-1

.1_TS.1 TS.2_TS.2

.195804
.063472
.116982
.393675

1.18347
-0.89746
-1.23208
-1.60829
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> merge(tsl, ts2)

GMT

TS.1 TS.2
2009-01-01 -0.195804 1.18347
2009-02-01 -0.116982 -1.23208
2009-03-01 -0.063472 -0.89746
2009-04-01 -1.393675 -1.60829
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Adding New Methods

@ Since timeSeries is an S4 class, we can use the function
setMethod () to create new methods for a generic function which
has can not handle by default the class.

@ In this example, we write a method for the lowess() function from
the stats package.

> setMethod("lowess", "timeSeries",
function(x, y = NULL, f = 2/3, iter = 3)
{
stopifnot (isUnivariate(x))
series(x) <- stats::lowess(x = x, y, f, iter)$y
x
»

[1] "lowess"
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Adding new methods

> LP60 <- LPP[,"LP60"]

> LP60low <- lowess(LP60, f = 0.08)

> plot (LP60)

> lines(LP60low, col = "brown", lwd = 2)

T T T T T T
2000-01-03 2001-06-22 2002-12-10 2004-05-30 2005-11-17 2007-05-08
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@recordIDs Concept

@ The slot @recordIDs is meant for additional information that we
want to keep for each time entries but which is not part of data part.

@ As starting from timeSeries version '2100.84' we have added a
method for the operator >$’ to access the @recordIDs as well as
the data part.

o by default show() will print the data part with the @recordIDs.
Note the ’*’ in the column names of @recordIDs in the output.

@ Q@recordIDs can be used to give a data.frame behavior to your
time series.

> ts$id <- "id"

> head(ts)
QMT

TS.1 TS.2 id* > cov(ts)
2009-01-01 0.050420 0.950282 id TS.1 TS.2
2009-02-01 0.119620 0.481442 id TS.1 0.101236 -0.056448
2009-03-01 0.099209 0.989013 id TS.2 -0.056448 0.097816
2009-04-01 0.051417 0.402059 id
2009-05-01 0.889680 0.111052 id
2009-06-01 0.225331 0.712281 id
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@recordIDs Example

@ A good example is to include turnpoints of the smoothed index to
the time series.

@ We can use the turnpoints() function from the R package

pastecs!.

@ The function determines the number and the positions of extrema,
i.e. the turning points, either peaks or pits, in a regular time series.

> library(pastecs)
> setMethod("turnpoints", "timeSeries", function(x)
{
stopifnot (isUnivariate(x))
tp <- turnpoints(as.ts(x))
x$peaks <- tp$peaks #-> need timeSeries >= 2100.84
x$pits <- tp$pits
x

»

[1] "turnpoints"

llbanez, Grosjean & Etienne, 2009
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> head (LP60low <- turnpoints(LP60low))

GMT

LP60 peaks* pits*
2000-01-03 97.730 FALSE FALSE
2000-01-04 97.767 FALSE FALSE
2000-01-05 97.805 FALSE FALSE
2000-01-06 97.842 FALSE FALSE
2000-01-07 97.880 FALSE FALSE
2000-01-10 97.917 FALSE FALSE
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@recordIDs Example

We plot the original index series and the smoothed series and add points
for the peaks and pits in green and red respectively.

> plot (LP60)

> lines(LP60low, col = "brown", lwd = 2)

> points(LP60low[LP60low$peaks,], col = "green3", pch = 24)
> points(LP60low[LP60low$pits,], col = "red", pch = 25)

Note: the use of the operator ’$°.
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T T T T T T
2000-01-03 2001-06-22 2002-12-10 2004-05-30 2005-11-17 2007-05-08
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Summary

timeSeries is meant to have a matrix like behavior
With some aspects of a data.frame,
It can handle ordered/unordered data and display them in any order.

It takes care of financial centers when merging/binding.

And has facilities to manage calendars thanks to the timeDate
package.
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Summary

> toLatex(sessionInfo())

@ R version 2.10.0 Under development (unstable) (2009-07-02
r48890), 1686-pc-linux-gnu

@ lLocale: LC_CTYPE=en_US.UTF-8, LC_NUMERI ...

@ Base packages: base, datasets, graphics, grDevices, methods, stats,
utils

@ Other packages: boot 1.2-37, fEcofin 2100.77, pastecs 1.3-8,
timeDate 2100.86, timeSeries 2100.84

o Loaded via a namespace (and not attached): tools 2.10.0
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