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Introduction

I common global classification methods may be inefficient when groups are heteroge-
nous
⇒ need for more flexible, local models

I continuous models that allow for subclasses:

B Mixture Discriminant Analysis (MDA): assumption of class conditional mixtures
of (multivariate) normals

B Common Components (Titsias and Likas 2001) imply a mixture of normals with
common components

I in this talk: discrete counterparts based on Latent Class Models (see Lazarsfeld
and Henry 1968) implemented in R-package lcda

I application to SNP data
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Local structures
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Mixture Discriminant Analysis and Common Components

I class conditional density (MDA)

f(x|Z = k) = fk(x) =
Mk∑

m=1

wmkφ(x;µmk,Σ)
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Mixture Discriminant Analysis and Common Components

I class conditional density (MDA)

f(x|Z = k) = fk(x) =
Mk∑

m=1

wmkφ(x;µmk,Σ)

I class conditional density of the Common Components Model (Titsias and Likas
2001)

P (X = x|Z = k) = fk(x) =
M∑

m=1

wmkφ(x;µm,Σ)

I posterior based on Bayes’ rule

P (Z = k|X = x) =
πkfk(x)∑K
l=1 πlfl(x)
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Latent Class Model

I latent (unobservable) variable Y with categorical outcomes in {1, . . . ,M} with
probability P (Y = m) = wm
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Latent Class Model

I latent (unobservable) variable Y with categorical outcomes in {1, . . . ,M} with
probability P (Y = m) = wm

I manifest (observable) variables X1, . . . , XD, Xd with outcomes in {1, . . . , Rd}
with probability P (Xd = r|Y = m) = θmdr
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Latent Class Model

I latent (unobservable) variable Y with categorical outcomes in {1, . . . ,M} with
probability P (Y = m) = wm

I manifest (observable) variables X1, . . . , XD, Xd with outcomes in {1, . . . , Rd}
with probability P (Xd = r|Y = m) = θmdr

I define Xdr = 1 if Xd = r and Xdr = 0 else and assume stochastic independence
of manifest variables conditional on Y , then the conditional probability mass
function is given by

f(x|m) =
D∏

d=1

Rd∏
r=1

θ
xdr
mdr
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Latent Class Model

I latent (unobservable) variable Y with categorical outcomes in {1, . . . ,M} with
probability P (Y = m) = wm

I manifest (observable) variables X1, . . . , XD, Xd with outcomes in {1, . . . , Rd}
with probability P (Xd = r|Y = m) = θmdr

I define Xdr = 1 if Xd = r and Xdr = 0 else and assume stochastic independence
of manifest variables conditional on Y , then the conditional probability mass
function is given by

f(x|m) =
D∏

d=1

Rd∏
r=1

θ
xdr
mdr

I unconditional probability mass function of manifest variables is

f(x) =
M∑

m=1

wm

D∏
d=1

Rd∏
r=1

θ
xdr
mdr
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Identifiability

Proposition 1. The LCM f(x) =
M∑

m=1
wm

D∏
d=1

Rd∏
r=1

θ
xdr
mdr is not identifiable.
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Identifiability

Proposition 1. The LCM f(x) =
M∑

m=1
wm

D∏
d=1

Rd∏
r=1

θ
xdr
mdr is not identifiable.

Proof.

I the LCM is a finite mixture of products of multinomial distributions

I each mixture component f(x|m) is the product of M(1, θmd1, . . . , θmdRd
)-

distributed random variables

I mixtures of M multinomials M(N, θ1, . . . , θp) are identifiable iff N ≥ 2M − 1
(Elmore and Wang 2003)

I mixtures of the product of marginal distributions are identifiable if mixtures of the
marginal distributions are identifiable (Teicher 1967)

⇒ the LCM is not identifiable.

2
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Estimation of the LCM

I estimation by EM-algorithm:
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Estimation of the LCM

I estimation by EM-algorithm:

I E step: Determination of conditional expectation of Y given X = x

τmn =
wmf(xn|m)
f(xn)
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Estimation of the LCM

I estimation by EM-algorithm:

I E step: Determination of conditional expectation of Y given X = x

τmn =
wmf(xn|m)
f(xn)

I M step: Maximization of the log-Likelihood and estimation of

wm =
1
N

N∑
n=1

τmn

and

θmdr =
1

Nwm

N∑
n=1

τmnxndr
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Model selection criteria

I information criteria

B AIC
−2 logL(w, θ|x) + 2η

B BIC
−2 logL(w, θ|x) + η logN

where η = M
(∑D

d=1Rd −D + 1
)
− 1 (=number of parameters)

I goodness-of-fit test statistics (predicted vs. observed frequencies)

B Pearson’s χ2

B likelihood ratio χ2
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Local Classification of Discrete Data

I two ways to use LCM for local classification:

B class conditional mixtures (like in MDA)
B common components
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Local Classification of Discrete Data

I two ways to use LCM for local classification:

B class conditional mixtures (like in MDA)
B common components

I class conditional mixtures

P (X = x|Z = k) = fk(x) =
Mk∑

m=1

wmk

D∏
d=1

Rd∏
r=1

θ
xkdr
mkdr,

I common components

P (X = x|Z = k) = fk(x) =
M∑

m=1

wmk

D∏
d=1

Rd∏
r=1

θ
xdr
mdr,
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Estimation of a common components model (option 1)

I let πk be the class prior, then

P (X = x) =
K∑

k=1

πk

M∑
m=1

wmk

D∏
d=1

Rd∏
r=1

θ
xdr
mdr

=
M∑

m=1

wm

D∏
d=1

Rd∏
r=1

θ
xdr
mdr

since
wm := P (m) =

K∑
k=1

P (k)P (m|k) =
K∑

k=1

πkwmk
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Estimation of a common components model (option 1)

I let πk be the class prior, then

P (X = x) =
K∑

k=1

πk

M∑
m=1

wmk

D∏
d=1

Rd∏
r=1

θ
xdr
mdr

=
M∑

m=1

wm

D∏
d=1

Rd∏
r=1

θ
xdr
mdr

since
wm := P (m) =

K∑
k=1

P (k)P (m|k) =
K∑

k=1

πkwmk

I this is a common Latent Class Model

I hence, estimate a global Latent Class model and determine parameter wmk of the
common components model by

ŵmk =
1
Nk

Nk∑
i=1

P̂ (Y = m|Z = k,X = xi)
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Estimation of a common components model (option 2)

I E step: Determination of conditional expectation

τmkn =
wmkf(xn|m)

f(xn)
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Estimation of a common components model (option 2)

I E step: Determination of conditional expectation

τmkn =
wmkf(xn|m)

f(xn)

I M step: Maximization of the log-Likelihood and estimation of

wmk =
1
Nk

Nk∑
n=1

τmkn

and

θmdr =
K∑

k=1

1
Nkwmk

Nk∑
n=1

τmknxndr
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Classification capability in Common Components Models

I measure for the ability to separate classes adequately

I impurity measures handling the subgroups like nodes in decision trees
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Classification capability in Common Components Models

I measure for the ability to separate classes adequately
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H = −
M∑
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K∑
k=1

P (k|m) · logK (P (k|m))
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Classification capability in Common Components Models

I measure for the ability to separate classes adequately

I impurity measures handling the subgroups like nodes in decision trees

I standardized mean entropy

H = −
M∑

m=1

wm

K∑
k=1

P (k|m) · logK (P (k|m))

I mean Gini impurity

G =
M∑

m=1

wm

[
1−

K∑
k=1

(P (k|m))2
]
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Implementation in R

I Package: lcda (requires poLCA, scatterplot3d and MASS)

I main functions: lcda, cclcda, cclcda2

I syntax like lda(MASS) (including predict method)

I example:

lcda(x, ...)

## Default S3 method:
lcda(x, grouping=NULL, prior=NULL,

probs.start=NULL, nrep=1, m=3,
maxiter = 1000, tol = 1e-10,
subset, na.rm = FALSE, ...)
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Application: simulation study

I intention: discrete MDA can be seen as localized Naive Bayes, it assumes local
independence instead of ”global” independence

I simulation of data by the discrete MDA model with and without existing subgroups

I probabilities θmkdr are defined in a way so that the subgroups are not existent

I in the case of existing subgroups discrete MDA classifies more adequately than
Naive Bayes

I otherwise discrete MDA and Naive Bayes lead to the same decision
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Application: SNP data

I GENICA study: aims at identifying genetic and gene-environment associated
breast cancer risks

I 1166 observations, 605 controls and 561 cases, of 68 SNP variables and 6
categorical epidemiological variables

I application of the presented local classification methods

I comparison to the classification results of Schiffner et al. (2009) on the same data
set with

B localized logistic regression
B CART
B random forests
B logic regression
B logistic regression
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Results: SNP-data

Table 1: Tenfold cross-validated error rates of the presented methods
(with number of subclasses in parentheses)

method 10 cv error (sd)

lcda (10/10) 0.220 (0.030)

cclcda (4) 0.345 (0.056)

cclcda2 (10) 0.471 (0.049)

Table 2: Tenfold cross-validated error rates as noted in Schiffner et
al. (2009)

method 10 cv error

localized logistic regression 0.367
CART 0.379
random forests 0.382
logic regression 0.385
logistic regression 0.366
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Conclusion

I three models based on Latent Class Analysis that provide a flexible approach to
local classification

I the models can handle missing values without imputation

I discrete MDA can be seen as a localized version of the Naive Bayes method

I further research: extend the methods to data of mixed type by assuming normality
of the continuous variables
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