

Michael Bücker

buecker@statistik.tu-dortmund.de

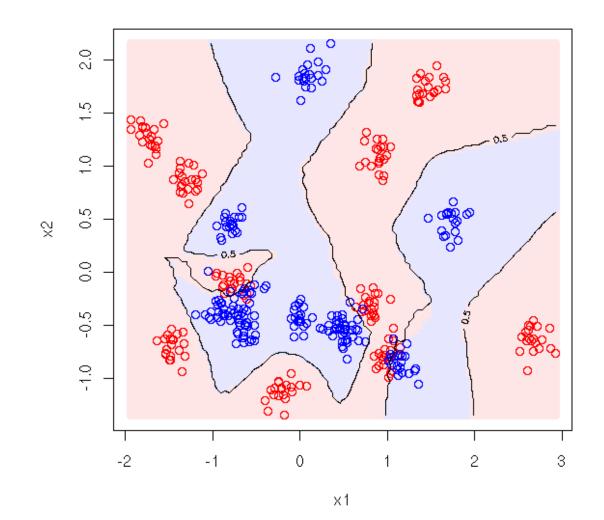
July 9, 2009

Introduction

- common global classification methods may be inefficient when groups are heterogenous
 - \Rightarrow need for more flexible, local models
- continuous models that allow for subclasses:
 - Mixture Discriminant Analysis (MDA): assumption of class conditional mixtures of (multivariate) normals
 - Common Components (Titsias and Likas 2001) imply a mixture of normals with common components
- in this talk: discrete counterparts based on Latent Class Models (see Lazarsfeld and Henry 1968) implemented in R-package lcda

application to SNP data

Local structures



Mixture Discriminant Analysis and Common Components

class conditional density (MDA)

$$f(x|Z = k) = f_k(x) = \sum_{m=1}^{M_k} w_{mk}\phi(x;\mu_{mk},\Sigma)$$

Mixture Discriminant Analysis and Common Components

class conditional density (MDA)

$$f(x|Z = k) = f_k(x) = \sum_{m=1}^{M_k} w_{mk}\phi(x;\mu_{mk},\Sigma)$$

 class conditional density of the Common Components Model (Titsias and Likas 2001)

$$P(X = x | Z = k) = f_k(x) = \sum_{m=1}^{M} w_{mk} \phi(x; \mu_m, \Sigma)$$

Mixture Discriminant Analysis and Common Components

class conditional density (MDA)

$$f(x|Z = k) = f_k(x) = \sum_{m=1}^{M_k} w_{mk}\phi(x;\mu_{mk},\Sigma)$$

 class conditional density of the Common Components Model (Titsias and Likas 2001)

$$P(X = x | Z = k) = f_k(x) = \sum_{m=1}^{M} w_{mk} \phi(x; \mu_m, \Sigma)$$

posterior based on Bayes' rule

$$P(Z = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^{K} \pi_l f_l(x)}$$

▶ latent (unobservable) variable Y with categorical outcomes in $\{1, ..., M\}$ with probability $P(Y = m) = w_m$

- ▶ latent (unobservable) variable Y with categorical outcomes in $\{1, ..., M\}$ with probability $P(Y = m) = w_m$
- ▶ manifest (observable) variables X_1, \ldots, X_D , X_d with outcomes in $\{1, \ldots, R_d\}$ with probability $P(X_d = r | Y = m) = \theta_{mdr}$

- ▶ latent (unobservable) variable Y with categorical outcomes in $\{1, ..., M\}$ with probability $P(Y = m) = w_m$
- ▶ manifest (observable) variables X_1, \ldots, X_D , X_d with outcomes in $\{1, \ldots, R_d\}$ with probability $P(X_d = r | Y = m) = \theta_{mdr}$
- define $X_{dr} = 1$ if $X_d = r$ and $X_{dr} = 0$ else and assume stochastic independence of manifest variables conditional on Y, then the conditional probability mass function is given by

$$f(x|m) = \prod_{d=1}^{D} \prod_{r=1}^{R_d} \theta_{mdr}^{x_{dr}}$$

- ▶ latent (unobservable) variable Y with categorical outcomes in $\{1, ..., M\}$ with probability $P(Y = m) = w_m$
- ▶ manifest (observable) variables X_1, \ldots, X_D , X_d with outcomes in $\{1, \ldots, R_d\}$ with probability $P(X_d = r | Y = m) = \theta_{mdr}$
- define $X_{dr} = 1$ if $X_d = r$ and $X_{dr} = 0$ else and assume stochastic independence of manifest variables conditional on Y, then the conditional probability mass function is given by

$$f(x|m) = \prod_{d=1}^{D} \prod_{r=1}^{R_d} \theta_{mdr}^{x_{dr}}$$

unconditional probability mass function of manifest variables is

$$f(x) = \sum_{m=1}^{M} w_m \prod_{d=1}^{D} \prod_{r=1}^{R_d} \theta_{mdr}^{x_{dr}}$$

Identifiability

Proposition 1. The LCM $f(x) = \sum_{m=1}^{M} w_m \prod_{d=1}^{D} \prod_{r=1}^{R_d} \theta_{mdr}^{x_{dr}}$ is not identifiable.

Identifiability

Proposition 1. The LCM $f(x) = \sum_{m=1}^{M} w_m \prod_{d=1}^{D} \prod_{r=1}^{R_d} \theta_{mdr}^{x_{dr}}$ is not identifiable.

Proof.

- the LCM is a finite mixture of products of multinomial distributions
- ▶ each mixture component f(x|m) is the product of $\mathbb{M}(1, \theta_{md_1}, \dots, \theta_{mdR_d})$ -distributed random variables
- ▶ mixtures of M multinomials $\mathbb{M}(N, \theta_1, \dots, \theta_p)$ are identifiable iff $N \ge 2M 1$ (Elmore and Wang 2003)
- mixtures of the product of marginal distributions are identifiable if mixtures of the marginal distributions are identifiable (Teicher 1967)

 \Rightarrow the LCM is not identifiable.

 \square

Estimation of the LCM

estimation by EM-algorithm:

Estimation of the LCM

estimation by EM-algorithm:

E step: Determination of conditional expectation of Y given X = x

$$\tau_{mn} = \frac{w_m f(x_n|m)}{f(x_n)}$$

Estimation of the LCM

estimation by EM-algorithm:

E step: Determination of conditional expectation of Y given X = x

$$\tau_{mn} = \frac{w_m f(x_n|m)}{f(x_n)}$$

M step: Maximization of the log-Likelihood and estimation of

$$w_m = \frac{1}{N} \sum_{n=1}^N \tau_{mn}$$

and

$$\theta_{mdr} = \frac{1}{Nw_m} \sum_{n=1}^N \tau_{mn} x_{ndr}$$

Model selection criteria

information criteria

⊳ AIC

⊳ BIC

$$-2\log \mathcal{L}(w,\theta|x) + 2\eta$$

 $-2\log \mathcal{L}(w,\theta|x) + \eta\log N$

where $\eta = M\left(\sum_{d=1}^{D} R_d - D + 1\right) - 1$ (=number of parameters)

goodness-of-fit test statistics (predicted vs. observed frequencies)

- $\triangleright\,$ Pearson's χ^2
- \triangleright likelihood ratio χ^2

Local Classification of Discrete Data

- ► two ways to use LCM for local classification:
 - ▷ class conditional mixtures (like in MDA)
 - ▷ common components

Local Classification of Discrete Data

► two ways to use LCM for local classification:

- class conditional mixtures (like in MDA)
- ▷ common components
- class conditional mixtures

$$P(X = x | Z = k) = f_k(x) = \sum_{m=1}^{M_k} w_{mk} \prod_{d=1}^{D} \prod_{r=1}^{R_d} \theta_{mkdr}^{x_{kdr}},$$

Local Classification of Discrete Data

▶ two ways to use LCM for local classification:

- class conditional mixtures (like in MDA)
- ▷ common components
- class conditional mixtures

$$P(X = x | Z = k) = f_k(x) = \sum_{m=1}^{M_k} w_{mk} \prod_{d=1}^{D} \prod_{r=1}^{R_d} \theta_{mkdr}^{x_{kdr}},$$

common components

$$P(X = x | Z = k) = f_k(x) = \sum_{m=1}^M w_{mk} \prod_{d=1}^D \prod_{r=1}^{R_d} \theta_{mdr}^{x_{dr}},$$

Estimation of a common components model (option 1)

let π_k be the class prior, then

$$P(X = x) = \sum_{k=1}^{K} \pi_k \sum_{m=1}^{M} w_{mk} \prod_{d=1}^{D} \prod_{r=1}^{R_d} \theta_{mdr}^{x_{dr}}$$
$$= \sum_{m=1}^{M} w_m \prod_{d=1}^{D} \prod_{r=1}^{R_d} \theta_{mdr}^{x_{dr}}$$

$$w_m := P(m) = \sum_{k=1}^{K} P(k) P(m|k) = \sum_{k=1}^{K} \pi_k w_{mk}$$

since

Estimation of a common components model (option 1)

let π_k be the class prior, then

$$P(X = x) = \sum_{k=1}^{K} \pi_k \sum_{m=1}^{M} w_{mk} \prod_{d=1}^{D} \prod_{r=1}^{R_d} \theta_{mdr}^{x_{dr}}$$
$$= \sum_{m=1}^{M} w_m \prod_{d=1}^{D} \prod_{r=1}^{R_d} \theta_{mdr}^{x_{dr}}$$

since

$$w_m := P(m) = \sum_{k=1}^{K} P(k) P(m|k) = \sum_{k=1}^{K} \pi_k w_{mk}$$

- this is a common Latent Class Model
- I hence, estimate a global Latent Class model and determine parameter w_{mk} of the common components model by

$$\hat{w}_{mk} = \frac{1}{N_k} \sum_{i=1}^{N_k} \hat{P}(Y = m | Z = k, X = x_i)$$

Estimation of a common components model (option 2)

E step: Determination of conditional expectation

$$\tau_{mkn} = \frac{w_{mk}f(x_n|m)}{f(x_n)}$$

Estimation of a common components model (option 2)

E step: Determination of conditional expectation

$$\tau_{mkn} = \frac{w_{mk}f(x_n|m)}{f(x_n)}$$

► **M** step: Maximization of the log-Likelihood and estimation of

$$w_{mk} = \frac{1}{N_k} \sum_{n=1}^{N_k} \tau_{mkn}$$

and

$$\theta_{mdr} = \sum_{k=1}^{K} \frac{1}{N_k w_{mk}} \sum_{n=1}^{N_k} \tau_{mkn} x_{ndr}$$

Classification capability in Common Components Models

- measure for the ability to separate classes adequately
- impurity measures handling the subgroups like nodes in decision trees

M. Bücker

Classification capability in Common Components Models

- measure for the ability to separate classes adequately
- impurity measures handling the subgroups like nodes in decision trees
- standardized mean entropy

$$H = -\sum_{m=1}^{M} w_m \sum_{k=1}^{K} P(k|m) \cdot \log_K (P(k|m))$$

Classification capability in Common Components Models

- measure for the ability to separate classes adequately
- impurity measures handling the subgroups like nodes in decision trees
- standardized mean entropy

$$H = -\sum_{m=1}^{M} w_m \sum_{k=1}^{K} P(k|m) \cdot \log_K (P(k|m))$$

mean Gini impurity

$$G = \sum_{m=1}^{M} w_m \left[1 - \sum_{k=1}^{K} \left(P(k|m) \right)^2 \right]$$

Implementation in R

- Package: lcda (requires poLCA, scatterplot3d and MASS)
- main functions: lcda, cclcda, cclcda2
- syntax like lda(MASS) (including predict method)

> example:

```
lcda(x, ...)
```

Application: simulation study

- intention: discrete MDA can be seen as localized Naive Bayes, it assumes local independence instead of "global" independence
- simulation of data by the discrete MDA model with and without existing subgroups
- > probabilities θ_{mkdr} are defined in a way so that the subgroups are not existent
- in the case of existing subgroups discrete MDA classifies more adequately than Naive Bayes
- otherwise discrete MDA and Naive Bayes lead to the same decision

Application: SNP data

- GENICA study: aims at identifying genetic and gene-environment associated breast cancer risks
- 1166 observations, 605 controls and 561 cases, of 68 SNP variables and 6 categorical epidemiological variables
- application of the presented local classification methods
- comparison to the classification results of Schiffner et al. (2009) on the same data set with
 - ▷ localized logistic regression
 - CART
 - ▷ random forests
 - ▷ logic regression
 - ▷ logistic regression

Results: SNP-data

Table 1: Tenfold cross-validated error rates of the presented methods(with number of subclasses in parentheses)

method	10 cv error (sd)
lcda $(10/10)$	0.220 (0.030)
cclcda (4)	$0.345 \ (0.056)$
cclcda2 (10)	0.471 (0.049)

Table 2: Tenfold cross-validated error rates as noted in Schiffner et al. (2009)

method	10 cv error
localized logistic regression	0.367
CART	0.379
random forests	0.382
logic regression	0.385
logistic regression	0.366

Conclusion

- three models based on Latent Class Analysis that provide a flexible approach to local classification
- ▶ the models can handle missing values without imputation
- discrete MDA can be seen as a localized version of the Naive Bayes method
- further research: extend the methods to data of mixed type by assuming normality of the continuous variables

References

- R. Elmore and S. Wang. Identifiability and estimation in finite mixture models with multinomial components. Technical Report 03–04, Department of Statistics, Pennsylvania State University, 2003.
- P.F. Lazarsfeld and N.W. Henry. *Latent structure analysis*. Houghton Miflin, Boston, 1968.
- J. Schiffner, G. Szepannek, Th. Monthé, and C. Weihs. Localized Logistic Regression for Categorical Influential Factors. To appear in A. Fink, B. Lausen, W. Seidel and A. Ultsch, editors, *Advances in Data Analysis, Data Handling and Business Intelligence*. Springer-Verlag, Heidelberg-Berlin, 2009.
- H. Teicher. Identifiability of mixtures of product measures. *The Annals of Mathematical Statistics*, 38:1300–1302, 1967.
- M.K. Titsias and A.C. Likas. Shared kernel models for class conditional density estimation. IEEE Transactions on Neural Networks, 12:987–997, 2001.