Methods 000 00	Results 000000 000

Family-based analysis of genome-wide gene \times gene interactions

Marit Ackermann

Biotec TU Dresden

July 9, 2009

Marit Ackermann

Biotec TU Dresden

Methods 000 00	Results 000000 000

Motivation

Methods

Family-based Association Test External Data

Results

Example Discussion

Biotec TU Dresden

・ロト ・回ト ・ヨト

Marit Ackermann

Motivation	Methods	
	000 00	000000 000

Motivation

Methods Family-based Association Test External Data

Results Example Discussior

Marit Ackermann

Biotec TU Dresden

・ロト ・回ト ・ヨト ・

Motivation	Methods	
	000 00	000000 000

Epistasis

- Epistasis: interaction between two or more genes
- known to be fundamental for the function of regulatory pathways in mammals
- implies its importance for the development of complex diseases such as cancer, Alzheimer's disease, diabetes

< □ > < 同 >

Motivation	Methods 000 00	Results 000000 000

Traditional Approaches

- for yeast and worms large scale double knock-outs and knock-downs exist
- linkage and association studies in mammals concentrate on either single locus associations or interactions between few preselected loci
- major reasons: non-availability of large and suitable data for analysis of interaction effects, low power of the studies

Genome-Wide Screen in Mammals

 recent advances in biotechnology allow genome-wide genotyping of thousands of individuals
 → can be used to study epistatic effects over whole genome

▶ genotyped individuals possibly related → take population structure into account; even make use of known relationships

Methods	
000 00	000000 000

Motivation

Methods Family-based Association Test External Data

Results Example Discussior

Marit Ackermann

Biotec TU Dresden

・ロン ・回 と ・ ヨン・

Motivation

Methods Family-based Association Test External Data

Results Example Discussior

Biotec TU Dresden

・ロン ・回 と ・ ヨン・

Marit Ackermann

Method

- idea: two markers whose genotypes are correlated are likely to interact
- measure association via χ²-test for contingency table

	BB	Bb	bb	
AA	n _{AABB}	n _{AABb}	n _{AAbb}	
Aa	n _{AaBB}	n _{AaBb}	n _{Aabb}	
aa	n _{aaBB}	n _{aaBb}	n _{aabb}	

・ロト ・回ト ・ モト

Marit Ackermann

Method

- idea: two markers whose genotypes are correlated are likely to interact
- ► measure association via χ²-test for contingency table
- make use of family information to avoid spurious findings: compare observed allele combination with what could have been inherited from parents
- additional correction for allelic drift

	BB	Bb	bb	
AA	n _{AABB}	n _{AABb}	n _{AAbb}	
Aa	n _{AaBB}	n _{AaBb}	n _{Aabb}	
aa	n _{aaBB}	n _{aaBb}	n _{aabb}	

Biotec TU Dresden

Family-based Association Test

Problem

- extremely large number of interactions (example: 10,000 markers: ~ 10⁸ interactions)
- leads to underpowered analysis, many false positive findings

< D > < P > < P >

Family-based Association Test

Problem

- extremely large number of interactions (example: 10,000 markers: ~ 10⁸ interactions)
- leads to underpowered analysis, many false positive findings
- need to complement with additional, external information

・ロト ・回ト ・ヨト

Motivation

Methods Family-based Association Test External Data

Results Example Discussior

Biotec TU Dresden

・ロン ・回 と ・ ヨン・

Marit Ackermann

External Data

Databases

- use public knowledge about gene × gene interactions to confirm results;
 e.g. STRING: database of known and predicted physical and functional interactions
- include information from regulatory pathways

Methods	Results
000 00	000000 000

Motivation

Methods Family-based Association Test External Data

Results Example Discussion

Biotec TU Dresden

<ロ> <同> <同> < 同> < 目>

Marit Ackermann

	Methods 000 00	Results ●00000 000
Example		

Motivation

Methods Family-based Association Test External Data

Results Example Discussion

Biotec TU Dresden

・ロト ・回ト ・ヨト

Marit Ackermann

	Methods 000 00	Results 0●0000 000
Example		

Data

- Solberg, L.C. et al. (2006). A protocol for high-throughput phenotyping, suitable for quantitative trait analysis in mice. *Mammalian Genome*, **17**, 129-146.
- \blacktriangleright genotype data from more than 2000 outbred mice consisting of \sim 12,000 markers
- only consider interactions on two different chromosomes

A (1) > A (1) > A

Methods 000

Modified χ^2 -Test

Marit Ackermann

Biotec TU Dresden

Method:

chi-square score

Example

Marit Ackermann

Biotec TU Dresden

Method 000

Confirmation with STRING

- fraction of SNP pairs with a low χ² p-value that lie close to interacting genes
- proportion of confirmed interactions should increase with increasing χ² score

Image: Image:

-

Method 000

Confirmation with STRING

- fraction of SNP pairs with a low χ² p-value that lie close to interacting genes
- proportion of confirmed interactions should increase with increasing χ² score

-

Method 000

Confirmation with STRING

- ► fraction of SNP pairs with a low χ² p-value that lie close to interacting genes
- proportion of confirmed interactions should increase with increasing χ² score

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-

Marit Ackermann

Incorporating Pathway Information

 interactions in one pathway can be crucial, e.g. when signal weakened by two consecutive dysfunctional pathway members

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-

Biotec TU Dresden

Marit Ackermann

Incorporating Pathway Information

- interactions in one pathway can be crucial, e.g. when signal weakened by two consecutive dysfunctional pathway members
- interactions between pathways indicate common endpoint

< □ > < 同 >

Biotec TU Dresden

Marit Ackermann

	Methods 000 00	Results 00000● 000
Example		

Example: KEGG Pathway

KEGG: database of signaling and metabolic pathways

Biotec TU Dresden

Family-based analysis of genome-wide gene \times gene interactions

Marit Ackermann

Biotec TU Dresden

	Methods	Results
	000 00	000000 •00
Discussion		

Motivation

Methods Family-based Association Test External Data

Results Example Discussion

Biotec TU Dresden

<ロ> <同> <同> < 同> < 目>

Marit Ackermann

	Methods 000 00	Results ○○○○○○ ○●○
Discussion		

we propose a new approach to infer epistatic interactions in mammals

・ロト ・回ト ・ヨト

Family-based analysis of genome-wide gene \times gene interactions

	Methods 000 00	Results ○○○○○○ ○●○
Discussion		

- we propose a new approach to infer epistatic interactions in mammals
- works on a genome-wide scale

Image: A math the second se

Family-based analysis of genome-wide gene \times gene interactions

	Methods 000 00	Results ○○○○○○ ○●○
Discussion		

- we propose a new approach to infer epistatic interactions in mammals
- works on a genome-wide scale
- population structure explicitly taken into account

Family-based analysis of genome-wide gene \times gene interactions

	Methods OOO OO	Results ○○○○○○ ○●○
Discussion		

- we propose a new approach to infer epistatic interactions in mammals
- works on a genome-wide scale

Family-based analysis of genome-wide gene \times gene interactions

- population structure explicitly taken into account
- other counfounding factors readily included

< □ > < 同 >

	Methods OOO OO	Results ○○○○○○ ○●○
Discussion		

- we propose a new approach to infer epistatic interactions in mammals
- works on a genome-wide scale
- population structure explicitly taken into account
- other counfounding factors readily included
- data integration from different sources increases power and facilitates biological interpretation of results

Methoc 000

Acknowledgements

- Dr. Andreas Beyer
- my colleagues in the Cellular Networks and Systems Biology group

Klaus Tschira Foundation for funding

Biotec TU Dresden

< 17 ▶

Marit Ackermann