
Automated model generation and selection methods for 
combinatorially complex biochemical equilibriums 

 
Tom Radivoyevitch1,2,*  

 
1. Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106 USA 
2.  Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio 44106 USA 
*  Contact author: txr24@case.edu 

 
Keywords: Enzymes, Rate Laws, Systems Biology, Model Selection 

 
 Background: Biochemical equilibrium models can be generated from 

a full model via hypotheses that some dissociation constants K are infinite 
and/or that two or more K are equal. For example, in enzyme-substrate-
inhibitor (ESI) equilibriums, competitive inhibition models hypothesize 
that K for ESI is infinite and non-competitive inhibition models 
hypothesize that K for E_S equals K for EI_S (Fig. 1). In combinatorially 
complex systems, the number of plausible protein complexes is large 
relative to the number of reactants, and far more K infinity and equality 
hypotheses arise than can be specified by hand.  Automated model 
generation and selection methods are needed for these situations. 
      Results: Biochemical equilibrium models of ATP-induced 
ribonucleotide reductase R1 hexamerization were generated via K infinity 
and equality hypotheses from a full model that included three (s, a and h) 
ATP binding sites on R1. Assuming, based on the crystal structure of 
yeast R1 dimers [PNAS 2006, 103, 4022-4027], that the s-site is created 
at the R1 dimer interface, it is reasonable to assume that R1 oligomer s-
sites are always fully occupied (i.e. that oligomers cannot form without 
full s-site occupancy) and that R1 monomer s-sites are always 
unoccupied (i.e. that the s-site does not exist in R1 monomers).  With 
ATP and R1 denoted by X and R, respectively, the full spur graph 
system equations are then 
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where the T denotes totals and a lack thereof denotes free concentrations. 
The number of complexes represented is thus 2 + 5 + 9 + 13 = 29 and this 
implies 229 = ~500 million spur models.  Not all of these models need to 
be fitted, however, as one can first fit the 29 single edge models, then the 
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models, etc., stopping once the lowest AIC of the current batch is greater 
than the lowest AIC of the previous batch. Using this approach to analyze 
recent dynamic light scattering data [Biochemistry 2002, 41, 462-474], 
assuming h-sites are filled only after all of the a-sites are filled (and 
that, in oligomers, these are filled only after all of the s-sites are filled), 
Figure 2 shows that the best models (those with the lowest Akaike 
Information Criterion) do not support the existence of an h-site.        

Conclusions: Automated model space generation and analysis 
methods for combinatorially complex biochemical equilibriums in 
which the number of models is too large to enumerate by hand, can be realized.  Such methods let data speak. 
They are important because they can lead to inferences that might otherwise be missed. 
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Figure 1. ESI models/graphs. The full spur graph at the 
top generates the seven models/graphs below it via 
hypotheses taken one at a time, two at a time, etc, that 
dissociation constants are infinite.  The C-shaped grid 
graph is a data-fitting equivalent of the full spur graph. It 
is important because it generates the non-competitive 
inhibition model where parallel edges (Kd’s) are equal. 
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Figure 2. Normalized densities of models with SSEs less 
than twice the minimum SSE (legend indicates model 
numbers). Though occupied h-site models outnumber 
unoccupied h-site models 3 to 1, the latter make up 28 of the 
top 30 models and all of the top 5models.  
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