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Introduction

Power is one of the more important and least covered topics inan Introduc-
tory Statistics course. This poster shows how power, even with non-central
distributions, can be covered for students in a basic statistics course.

Prerequisite Concepts

Once a student understands just a few concepts, thepower of a test can be
introduced.

• α = P(type I error) = level of significance= P(rejectH0|H0 is true) =
P(acceptH1|H0 is true).

• β = P(type II error) = P(fail to rejectH0|H0 is false) =
P(acceptH0|H1 is true).

• Given a composite alternative hypothesisH1 : θ ∈ Θ1,
Power(θ) = P(rejectH0|H0 is false) = P(acceptH1|H1) = 1 − β(θ),
whereβ(θ) is the probability of a type II error at a givenθ.

Normal Distribution and Power

Computing the power for a particular alternative or finding the power func-
tion when working with normal distributions is covered in most texts and is
easily done withR.

Problem: Given a normal distribution with unknown meanµ and known stan-
dard deviationσ = 3, for a test of the null hypothesisH0 : µ = 40 versus the
alternative hypothesisH1 : µ = 48 using anα level of 0.05
A. With a sample of size one, compute the probability of a typeII error.

B. Graph thePower(µ) for values ofµ from 25 to 55 for testing a two tailed
alternative hypothesis using samples of size one and nine.

Answers:
A. To find the the probability of a type II error, use theR commands
> cv <- qnorm(0.95, 40, 3)
> typeIIerror <- pnorm(cv, 48, 3)
> typeIIerror
[1] 0.1534347

30.00 40.00 44.93 48.00 60.00

N(40, 3) N(48, 3)

P(type I error) = 0.05P(type II error) = 0.153

B. To graph thePower(µ) for values ofµ from 25 to 55 for testing a two
tailed alternative hypothesis using samples of size one andnine, use theR
commands:

> mu <- seq(25, 55, 0.01)
> powerONE <- pnorm(qnorm(.025,40,3), mu, 3) +
+ pnorm(qnorm(0.975,40,3),mu,3,lower=FALSE)
> powerNINE <- pnorm(qnorm(.025,40,1), mu, 1) +
+ pnorm(qnorm(0.975,40,1),mu,1,lower=FALSE)
> plot(mu, powerONE, type="l", lwd=2, col="blue",
+ ylim=c(0,1.1))
> lines(mu, powerNINE, col="blue", lwd=2)
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Binomial Distribution and Power

So that students do not think that all power can be computed byshifting a
central sampling distribution either to the right or left, introduce power using
the binomial distribution.

Problem: SupposeX ∼ Bin(n = 14, θ = 0.5). Determine thePower(θ =
0.85) when testingH0 : θ = 0.5 versusH1 : θ > 0.5 with α = 0.0897 (a
decision to reject the null hypothesis whenX > 9).

Answer: By graphing aX ∼ Bin(n = 14, θ = 0.5) and aX ∼ Bin(n =
14, θ = 0.85), as shown below, it is very easy for the students to visualizethe
Power(θ = 0.85) with an asymmetric distribution.

To find thePower(θ = 0.85), use theR commands
> POWER <- sum(dbinom(10:14, 14, 0.85))
> POWER
[1] 0.9532597
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With a little creativity, students can write a few lines of code to create a graph
like the one below showing thePower(θ).
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Central and Non-central t Distribution

Simulation is an effective way to reinforce the concept of a sampling distribu-
tion.

Central t Distribution

Example: Have students simulate the quantity

tc =
X − µ0

S/
√

n

when sampling from a normal distribution. Compare the quantiles of the sim-
ulated sampling distribution versus the theoretical quantiles of atn−1.

TheR simulation of 50,000 samples of size 16 from a normal distribution with
mean of 100 and standard deviation of 20 is in the online script.

A density histogram of the quantity tc with a superimposed density of a t15
along with the theoretical and simulated quantiles suggestthe simulation is a
quite accurate representation of at15 distribution:

−4 −3 −2 −1 0 1 2 3 4

t15

Non-central t Distribution

To introduce the non-centralt distribution with non-centrality parameterγ
(t⋆ν; γ), have the students simulate the quantity

tnc =
( Y 1• − Y 2•)

Sp ·
√

1
n1

+ 1
n2

. (1)

The online script takesm = 50, 000 samples fromN (µ1 = 120, σ1 = 20) of
sizen1 = 16 and fromN (µ2 = 100, σ2 = 20) of sizen2 = 25.

The simulated values are displayed in a density histogram and a non-central
t with non-centrality parameterγ = 3.123475 is superimposed over the simu-
lated values.
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The simulated values are counted to computePower(µ1 − µ2 = 20) for
H0 : µ1 − µ2 = 0 versusH1 : µ1 − µ2 6= 0 at theα = 0.05 level (critical
values shown in red above).

̂Power(µ1 − µ2 = 20) =
#

[(
tnc > t0.975,39

)
∪

(
tnc < t0.025,39

)]

m
= 0.862

This agrees well with the theoretical power of the test (0.861).

Power could also be approximated using the simulation approach when the
variances for the two populations are unknown and unequal (Behrens-Fisher
problem).

The Non-centrality Parameter

For the non-centrality parameter,γ, and thet statistic,t,

γ =
(µ1 − µ2)

(
1
n1

+ 1
n2

)−1/2

σ
and t =

( Y 1• − Y 2•)
(

1
n1

+ 1
n2

)−1/2

Sp
,

(2)
t measures the statistical differences between thesample means andγ is used
to measure the statistical differences between thepopulation means.

Squaring both quantities in (2), gives

F = t2 =
( Y 1• − Y 2•)2

(
1
n1

+ 1
n2

)−1

S2
p

=
MSTreatment

MSError

and

λ = γ2 =
(µ1 − µ2)

2
(

1
n1

+ 1
n2

)−1

σ2
=

SSHypothesis(population)

σ2

whereSSHypothesis(population) is the sum of squares for treatments obtained
by replacingY 1• with µ1, Y 2• with µ2, andY •• with n1µ1+n2µ2

n1+n2
.

When λ is the ratio ofSSHypothesis(population) to σ2, the calculation ofλ
is straightforward: TheSSHypothesis(population) will always be the sum of
squares formula for theH0 being tested.

This method of computingλ extends to any hypothesis the user would like to
test. It is not limited merely to the equality of treatment means nor to equal
sample sizes.

To compute the power of the test whenµ1 − µ2 = 20, σ1 = σ2 = 20, n1 = 16,
andn2 = 25 using a two-sided alternative withα = 0.05, compute the non-
centrality parameter to be

γ =
(µ1 − µ2)

(
1
n1

+ 1
n2

)−1/2

σ
=

(120 − 100)
(

1
16 + 1

25

)−1/2

20
= 3.123475.

The power of the test is then

Power(µ1 − µ2 = 20) = P (RejectH0|H1)

=P

((
T < tα/2;n1+n2−2

)∣∣∣T ∼ t⋆n1+n2−2;γ

)
+

P

((
T > t1−α/2;n1+n2−2

)∣∣∣T ∼ t⋆n1+n2−2;γ

)

=P
(
(t⋆39;3.123475 < t0.025;39)

)
+ P

(
(t⋆39;3.123475 > t0.975,39)

)

=P
(
(t⋆39;3.123475 < −2.022691)

)
+ P

(
(t⋆39;3.123475 > 2.022691)

)
= 0.8612027

R commands

To find Power(µ1 − µ2 = 20) with R, one can use the standard commands
pt() andqt() as follows:

> cvl <- qt(0.025, 39)
> cvu <- qt(0.975, 39)
> Power <- pt(cvl, 39, 3.123475) +
+ pt(cvu, 39, 3.123475, lower.tail=FALSE)
> Power
[1] 0.8612027

The functionpower.t.test()will return power for one- and two-samplet
tests (when each sample is the same size) andpower.anova.test() will
return the power for one-way analysis of variance problems when the sam-
ple sizes are equal. It would not be hard to modify the currentcode to either
function to accommodate unequal sample sizes as special cases.

Non-central F Distribution

Suppose the true mean grade for University A’s students using teaching meth-
ods 1, 2, 3, and 4 have means of 71, 73, 75, and 80 with a common standard
deviation ofσ = 12. If n1 = 11, n2 = 13, n3 = 10, andn4 = 12, determine the
probability a difference among the means will be detected using α = 0.05.

λ =
SSHypothesis

σ2
=

∑4
i=1 ni(µi• − µ̄••)2

σ2

=
11(71 − 74.78)2 + 13(73 − 74.78)2 + 10(75 − 74.78)2 + 12(80 − 74.78)2

122

= 3.65157

> Power <- 1 - pf(qf(0.95, 3, 42), 4, 42, 3.65157)
> Power
[1] 0.2204405
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Power(λ = 3.65)
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Conclusion

With appropriate examples, power can be covered withR in an introductory
statistics course. When students use simulation, they gainan intuitive under-
standing of power, even for non-central distributions.
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