Ideas for Introducing Power in the Service Statistics Course

Alan T. Arnholt and Jose Almer T. Sanqui, Appalachian State University, Boone, NC, USA

Introduction

Power is one of the more important and least covered topics in an Introdu Power is one of the more important and least covered topics in an Introduc-
tory Statistics course. This poster shows how power, even with non-central tistributions, can be covered for students in a basic statistics course.
titer

Prerequisite Concepts
Once a student understands just a few concepts, the power of a test can be
troduced

- $\alpha=\mathbb{P}($ type I error $)=$ level of significance $=\mathbb{P}\left(\right.$ reject $H_{0} \mid H_{0}$ is true $)=$ $\mathbb{P}\left(\right.$ accept $H_{1} \mid H_{0}$ is true $)$.
$\stackrel{\rightharpoonup}{\bullet} \boldsymbol{\beta}=\mathbb{P}$ (type II error) $) \mathbb{P}$ (fail to reject $H_{0} \mid H_{0}$ is false $)=$
\mathbb{P} (accept $H_{0} \mid H_{1}$ is true)
- Given a composite alternative hypothesis $H_{1}: \theta \in \Theta_{1}$,
Power $(\theta)=\mathbb{P}$ (reject $H_{0} \mid H_{0}$ is false $)=\mathbb{T}($ acce Power $(\theta)=\mathbb{P}$ reject $H_{0} \mid H_{0}$ is false $)=\mathbb{P}$ (accept $\left.H_{1} \mid H_{1}\right)$

Normal Distribution and Power

\qquad
Computing the power for a particular alternative or finding the power func-
ion when working with normal distributions is covered in most texts and is tion when working
easily done with R .
Problem: Given a normal distribution with unknown mean μ and known standard deviation $\sigma=3$, for a test of the null hypothesis $H_{0}: \mu=40$ versus the dard deviation $\sigma=3$, for a test of the null hypothesis H_{0} :
alternative hypothesis $H_{1}: \mu=48$ using an α level of 0.05
A. With a sample of size one, compute the probability of a type II error.
B. Graph the Power (μ) for values of μ from 25 to 55 for testing a two tailed
alternative hypothesis using samples of size one and nine
Answers:
$>$ To find the the probability of a type II error, use the R commands

$>$ typeITerror
[1] 0.1534347

B. To graph the Power(μ) for values of μ from 25 to 55 for testing a two
tailed alternative hypothesis using samples of size one and nine, use the R commands:
mu $<-\operatorname{seq}(25,55,0.01)$
$>$ poweroNe $<-$ p 0 .
powerONE <- pnorm (qnorm $(.025,40,3)$, mu, 3)

 plot (mu, powerone, type= $=1$ ", 1 wd $=2$, col $=$ "blue $"$, ylim=c($0,1.1$)
lines (mu, pow

Binomial Distribution and Power

So that students do not think that all power can be compted by shet So that students do not think that alt power can be computed by shifting a
central sampling distribution either to the right or left, introduce power using he binomial distribution.
Problem: Suppose $X \sim \operatorname{Bin}(n=14, \theta=0.5)$. Determine the $\operatorname{Power}(\theta=$ 0.85) when testing $H_{0}: \theta=0.5$ versus $H_{1}: \theta>0.5$ with $\alpha=0.0897$ (a decision to reject the null hypothesis when $X>9$).
Answer: By graphing a $X \sim \operatorname{Bin}(n=14, \theta=0.5)$ and a $X \sim \operatorname{Bin}(n=$
$14, \theta=0.85)$, as shown below, it is very easy for the students $\operatorname{Power}(\theta=0.85)$ with an asymmetric distribution.
To find the $\operatorname{Power}(\theta=0.85)$, use the R commands
POWER <- $\operatorname{sum}(\operatorname{dbinom}(10: 14,14,0.85)$
$>$ POWER
PI] 0.953259

With a little creativity, students can write a few lines of code to create a graph like the one below showing the Power $(\theta$.

Central and Non-central t Distribution Simulation is an effective way to reinforce the concept of a sampling der tion.

Central t Distribution

Example: Have students simulate the quantity

$$
\operatorname{tc}=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}}
$$

when sampling from a normal distribution. Compare the quantiles of the simulated sampling distribution versus the theoretical quantiles of a t_{n} The R simulation of 50,000 samples of size 16 from a normal distribution with mean of 100 and standard deviation of 20 is in the online scrip.
A density histogram of the quantity tc with a superimposed density of a t_{15} along with the theoretical and simulated quantiles suggest the simulation is a wite accurate representation of a to distribution

Non-central t Distribution

To introduce the non-central t distribution with non-centrality parameter To introduce the non-central t distribution wit
$\left(t_{\nu}^{*} ; \gamma\right)$, have the students simulate the quantity

$$
\operatorname{tnc}=\frac{\left(\bar{Y}_{\bullet}-\bar{Y}_{2 \bullet}\right)}{S_{p} \cdot \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}
$$

The online script takes $m=50,000$ samples from $N\left(\mu_{1}=120, \sigma_{1}=20\right)$ of size $n_{1}=16$ and from $N\left(\mu_{2}=100, \sigma_{2}=20\right)$ of size $n_{2}=25$.
The simulated values are displayed in a density histogram and a non-central t with non-centrality parameter $\gamma=3.123475$ is superimposed over the simu-
lated values.

The simulated values are counted to compute $\operatorname{Power}\left(\mu_{1}-\mu_{2}=20\right)$ fo $H_{0}: \mu_{1}-\mu_{2}=0$ versus
values shown in red above).
$\widehat{\text { Power }}\left(\mu_{1}-\mu_{2}=20\right)=\underline{\#\left[\left(\operatorname{tnc}>t_{0.975,39}\right) \cup\left(\operatorname{tnc}<t_{0.025,39}\right)\right]}=0.862$ This agres well with the theoretical power of the test (0.861).
Power could also be approximated using the simulation approach when the variances for the two populations are unknown and unequal (Behrens-Fisher problem).
The Non-centrality Parameter

For the non-centrality parameter, γ, and the t statistic,
$=\frac{\left(\mu_{1}-\mu_{2}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{-1 / 2}}{\sigma}$ and $t=\frac{\left(\bar{Y}_{1 \bullet}-\bar{Y}_{2 \bullet}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}{S_{p}}$
t measures the statistical differences between the sample means and γ is used to measure the statistical differences between the population means. Squaring both quantities in (2), give

$$
F=t^{2}=\frac{\left(\bar{Y}_{1} \bullet-\bar{Y}_{\mathbf{\bullet}}\right)^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{-1}}{S_{p}^{2}}=\frac{M S_{\text {Treatment }}}{M S_{\text {Error }}}
$$

and

$$
\lambda=\gamma^{2}=\frac{\left(\mu_{1}-\mu_{2}\right)^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{-1}}{\sigma^{2}}=\frac{S S_{\text {Hypothesis }} \text { (population) }}{\sigma^{2}}
$$

where $S S_{\text {Hypotesis (population) is the sum of squares for treatments obtained }}^{\sigma^{2}}$ by replacing $\bar{Y}_{\bullet} \bullet$ with $\mu_{1}, \bar{Y}_{2 \bullet}$ with μ_{2}, and $\overline{Y_{\bullet}}$ with $\frac{n_{1} \mu_{1}+n_{2} \mu_{2}}{n_{2}+n_{2}}$.

When λ is the ratio of $S S_{\text {Hypothesis }}$ (population) to σ^{2}, the calculation of λ is suares formula for the H_{0} being tested. squares formula for the H_{0} being tested.

This method of computing λ extends to any hypothesis the user would like to test. It is not limited merely to the equality of treatment means nor to equal sample sizes.

To compute the power of the test when $\mu_{1}-\mu_{2}=20, \sigma_{1}=\sigma_{2}=20, n_{1}=16$,
and $n_{2}=25$ using a two-sided alternative with $\alpha=0.05$, compute the non and $n_{2}=25$ using a two-s
centrality parameter to be
$\gamma=\frac{\left(\mu_{1}-\mu_{2}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{-1 / 2}}{\sigma}=\frac{(120-100)\left(\frac{1}{16}+\frac{1}{25}\right)^{-1 / 2}}{20}$

The power of the test is then
$\operatorname{Power}\left(\mu_{1}-\mu_{2}=20\right)=\mathbb{P}\left(\operatorname{Reject} H_{0} \mid H_{1}\right)$ $=\mathbb{P}\left(\left(T<t_{\alpha / 2 ; n_{1}+n_{2}-2}\right) \mid T \sim t_{n_{1}+n_{2}-2 ; \gamma}^{\star}\right)+$
$\mathbb{P}\left(\left(T>t_{1-\alpha / 2 ; n_{1}+n_{2}-2}\right) \mid T \sim t_{n_{1}+n_{2}-2 ; \gamma}^{\star}\right)$
$=\mathbb{P}\left(\left(t_{99 ; 3.123475}^{\star}<t_{0.025 ; 39)}\right)\right)+\mathbb{P}\left(\left(t_{39,3,123475}^{+}>t_{0.975,39}\right)\right)$
$\left.\mathbb{P}\left(\left(t_{39 ; 3,323475}^{*}<-2.022691\right)\right)+\mathbb{P}\left(t_{39 ; 3 ; 123475}^{*}>2.022691\right)\right)=0.8612027$

R commands
To find Power $\left(\mu_{1}-\mu_{2}=20\right)$ with R , one can use the standard comman
To find Power ($\mu_{1}-\mu_{2}=20$
pt () and qt () as follows:
$>\mathrm{cvl}<-\mathrm{qt}(0.025,39)$
$>\mathrm{cvu}<-\mathrm{qt}(0.975,39)$
$>\mathrm{cvu}<-$ qt $(0.975,39)$
$>$ Power <- pt (cvl, 39, 3.123475) +
$+\mathrm{pt}(\mathrm{cvu}, ~ 39,3.123475$, lower.tail=FALSE)
> Power
[1] 0.8612027
The function power.t.test () will return power for one- and two-sample tests (when each sample is the same size) and power.anova.test () will return the power for one-way analysis of variance problems when the sam ple sizes are equal. It would not be hard to modify the current code to eith function to accommodate unequal sample sizes as special cases.

Non-central F Distribution

Non-central F Distribution
Suppose the true mean grade for University A's students using teaching methods $1,2,3$, and 4 have means of $71,73,75$, and 80 with a common standar probability a difference among the means will be detected using $\alpha=0.05$.
$\lambda=\frac{S S_{\text {Hypothesis }}}{\sigma^{2}}=\frac{\sum_{i=1}^{4} n_{i}\left(\mu_{i}-\bar{\mu}_{\bullet \bullet}\right)^{2}}{\sigma^{2}}$
$=\frac{11(71-74.78)^{2}+13(73-74.78)^{2}+10(75-74.78)^{2}+12(80-74.78)^{2}}{\sigma^{2}}$ $=3.65157$
> Power <- 1-pf(qf(0.95, 3, 42), 4, 42, 3.65157) $>$ Power [1] 0.2204405

With appropriate examples, power can be covered with R in an introducto statistics course. When students use simulation, they gain an intuitive unde standing of power even for non-central distributions.

References

Ugatte, M. D., Militino, A. F., and Arnholt A. T. 2008. Probability and Statis

